[1]
|
Erdélyi, A. (1953) Higher Transcendental Functions. Volume 2, Bateman Project, McGraw-Hill, New York.
|
[2]
|
Rainville, E.D. (1960) Special Functions. Chelsea Publishing Company, New York.
|
[3]
|
Magnus, W., Oberhettinger, F. and Soni, R.P. (1966) Formulas and Theorems for the Special Functions of Mathematical Physics. Springer-Verlag, Berlin.
|
[4]
|
Bell, W.W. (1968) Special Functions for Scientists and Engineers. D. Van Nostrand Company, London.
|
[5]
|
Suetin, P.K. (1988) Orthogonal Polynomials in Two Variables. Nauka, Moskva. (In Russian)
|
[6]
|
Dunkl, C.F. and Xu, Y. (2014) Orthogonal Polynomials of Several Variables. 2nd Edition, Cambridge University Press, Cambridge.
|
[7]
|
Wünsche, A. (1988) Some Remarks about the Glauber-Sudarshan Quasiprobability. Acta Physica Slovaca, 48, 385- 408.
|
[8]
|
Wünsche, A. (1998) Laguerre 2D—Functions and Their Application in Quantum Optics. Journal of Physics A: Mathematical and General, 31, 8267-8287. http://dx.doi.org/10.1088/0305-4470/31/40/017
|
[9]
|
Wünsche, A. (1999) Transformation of Laguerre 2D Polynomials with Application to Quasiprobabilities. Journal of Physics A: Mathematical and General, 32, 3179-3199. http://dx.doi.org/10.1088/0305-4470/32/17/309
|
[10]
|
Wünsche, A. (2000) General Hermite and Laguerre Two-Dimensional Polynomials. Journal of Physics A: Mathematical and General, 33, 1603-1629; Corrigendum Journal of Physics A: Mathematical and General, 33, 3531.
http://dx.doi.org/10.1088/0305-4470/33/17/501
|
[11]
|
Wünsche, A. (2001) Hermite and Laguerre 2D Polynomials. Journal of Computational and Applied Mathematics, 133, 665-678. http://dx.doi.org/10.1016/s0377-0427(00)00681-6
|
[12]
|
Wünsche, A. (2001) Hermite and Laguerre 2D Polynomials. In: Dattoli, G., Srivastava, H.M. and Cesarano, C., Eds., Advanced Special Functions and Integration Methods, Aracne Editrice, Roma, 157-198.
|
[13]
|
Abramochkin, E. and Volostnikov, V. (1991) Beam Transformations and Nontransformed Beams. Optics Communications, 83, 123-135. http://dx.doi.org/10.1016/0030-4018(91)90534-K
|
[14]
|
Abramochkin, E.G. and Volostnikov, V.G. (2004) Generalized Gaussian Beams. Journal of Optics A: Pure and Applied Optics, 6, 157-161. http://dx.doi.org/10.1088/1464-4258/6/5/001
|
[15]
|
Fan, H.-Y. and Ye, X. (1993) Hermite Polynomial States in Two-Mode Fock Space. Physics Letters A, 175, 387-390.
http://dx.doi.org/10.1016/0375-9601(93)90987-B
|
[16]
|
Fan, H.-Y., Zou, H. and Fan, Y. (2001) A Complete and Orthonormal Representation in Two-Mode Fock Space Gained by Two-Variable Hermite Polynomials. International Journal of Modern Physics A, 16, 369-375.
http://dx.doi.org/10.1142/S0217751X01002294
|
[17]
|
Dattoli, G., Lorenzutta, S., Mancho, A.M. and Torre, A. (1999) Generalized Polynomials and Associated Operational Identities. Journal of Computational and Applied Mathematics, 108, 209-218.
http://dx.doi.org/10.1016/S0377-0427(99)00111-9
|
[18]
|
Bastiaans, M.J. and Alieva, T. (2005) Bi-Orthonormal Sets of Gaussian-Type Modes. Journal of Physics A: Mathematical and General, 38, 9931-9939. http://dx.doi.org/10.1088/0305-4470/38/46/003
|
[19]
|
Bastiaans, M.J. and Alieva, T. (2005) Propagation Law for the Generating Function of Hermite-Gaussian-Type Modes in First-Order Optical Systems. Optics Express, 13, 1107-1112. http://dx.doi.org/10.1364/OPEX.13.001107
|
[20]
|
Bastiaans, M.J. and Alieva, T. (2005) Generating Function for Hermite-Gaussian Modes Propagating through First-Order Optical Systems. Journal of Physics A: Mathematical and General, 38, L73-L78.
http://dx.doi.org/10.1088/0305-4470/38/6/L01
|
[21]
|
Shahwan, M.J.S. (2012) Incomplete 2D Hermite Polynomials and Their Generating Relations. Applied Mathematics & Information Sciences, 6, 109-112.
|
[22]
|
Ismail, M.E.H. and Zeng, J. (2015) Two-Vaiable Extensions of the Laguerre and Disc Polynomials. Journal of Mathematical Analysis and Applications, 424, 289-303. http://dx.doi.org/10.1016/j.jmaa.2014.11.015
|
[23]
|
Ismail, M.E.H. and Zeng, J. (2015) A Combinatorial Approach to the 2D-Hermite and 2D-Laguerre Polynomials. Advances in Applied Mathematics, 64, 70-88. http://dx.doi.org/10.1016/j.aam.2014.12.002
|
[24]
|
Twareque Ali, S., Bagarello, F. and Gazeau, J.P. (2015) D-Pseudo-Bosons, Complex Hermite Polynomials and Integral Quantization. Sigma, 11, 078 (23 p.).
|
[25]
|
Wünsche, A. (1999) Ordered Operator Expansions and Reconstruction from Ordered Moments. Quantum and Semiclassical Optics, 1, 264-288. http://dx.doi.org/10.1088/1464-4266/1/2/010
|
[26]
|
Srivastava, H.M. and Manocha, H.L. (1984) A Treatise on Generating Functions. Ellis Horwood, John Wiley, New York.
|
[27]
|
Fan, H.-Y., Liu, Z.-W. and Ruan, T.-N. (1984) Does the Creation Operator a+ Possess Eigenvectors. Communications in Theoretical Physics (Beijing), 3, 175-188. http://dx.doi.org/10.1088/0253-6102/3/2/175
|
[28]
|
Nieto, M.M. and Truax, D.R. (1995) Arbitrary-Order Hermite Generating Functions for Obtaining Arbitrary-Order Coherent and Squeezed States. Physics Letters A, 208, 8-16. http://dx.doi.org/10.1016/0375-9601(95)00761-Q
|
[29]
|
Wünsche, A. (1996) The Coherent States as Basis States on Areas Contours and Paths in the Phase Space. Acta Physica Slovaca, 46, 505-516.
|
[30]
|
Fernández, F.M. and Castro, E.A. (1996) Algebraic Methods in Quantum Chemistry and Physics. CRC Press, Boca Raton. (Cited According to [31])
|
[31]
|
Fernández, F.M. (1998) Generating Functions for Hermite Polynomials of Arbitrary Order. Physics Letters A, 237, 189-191. http://dx.doi.org/10.1016/S0375-9601(97)00853-0
|
[32]
|
Dattoli, G., Torre, A. and Carpanese, M. (1998) Operational Rules and Arbitrary Order Hermite Generating Functions. Journal of Mathematical Analysis and Applications, 227, 98-111. http://dx.doi.org/10.1006/jmaa.1998.6080
|
[33]
|
Dattoli, G., Torre, A. and Lorenzutta, S. (1999) Operational Identities and Properties of Ordinary and Generalized Special Functions. Journal of Mathematical Analysis and Applications, 236, 399-414.
http://dx.doi.org/10.1006/jmaa.1999.6447
|
[34]
|
Wünsche, A. (2005) Generalized Zernike or Disc Polynomials. Journal of Computational and Applied Mathematics, 174, 135-163. http://dx.doi.org/10.1016/j.cam.2004.04.004
|
[35]
|
Roman, S. (1984) The Umbral Calculus. Academic Press, New York.
|
[36]
|
Prudnikov, A.P., Brychkov, Y.A. and Marichev, O.I. (1991) Integrals and Series: Special Functions. Taylor and Francis, London. (Russian Original: Nauka, Moskva 1983)
|
[37]
|
Wünsche, A. (2001) Relation of Quasiprobabilities to Bargmann Representation of States. Journal of Optics B: Quantum and Semiclassical Optics, 3, 6-15. http://dx.doi.org/10.1088/1464-4266/3/1/302
|
[38]
|
Wünsche, A. (2004) Quantization of Gauss-Hermite and Gauss-Laguerre Beams in Free Space. Journal of Optics B: Quantum and Semiclassical Optics, 6, S47-S59.
|
[39]
|
Fan, H.-Y. and Wünsche, A. (2005) Wavefunctions of Two-Mode States in Entangled-State Representation. Journal of Optics B: Quantum and Semiclassical Optics, 7, R88-R102. http://dx.doi.org/10.1088/1464-4266/7/6/R02
|
[40]
|
Perelomov, A.M. (1977) Generalized Coherent States and Some of Their Applications. Soviet Physics Uspekhi, 20, 703-720. http://dx.doi.org/10.1070/PU1977v020n09ABEH005459
|
[41]
|
Perelomov, A.M. (1986) Generalized Coherent States and Their Application. Springer-Verlag, Berlin.
|
[42]
|
Vourdas, A. and Wünsche, A. (1998) Resolutions of the Identity in Terms of Line Integrals of SU(1, 1) Coherent States. Journal of Physics A: Mathematical and General, 31, 9341-9352. http://dx.doi.org/10.1088/0305-4470/31/46/024
|
[43]
|
Wünsche, A. (2003) Squeezed States. In: Dodonov, V.V. and Man’ko, V.I., Eds., Theory of Nonclassical States of Light, Taylor and Francis, London and New York, 95-152.
|