[1]
|
Petrovic, S., Osborne, M. and Lavrenko, V. (2011) Rt to Win! Predicting Message Propagation in Twitter. ICWSM.
|
[2]
|
Hong, L., Dan, O. and Davison, B.D. (2011) Predicting Popular Messages in Twitter. WWW (Companion Volume), 57-58. http://dx.doi.org/10.1145/1963192.1963222
|
[3]
|
Pinto, H., Almeida, J.M. and Goncalves, M.A. (2013) Using Early View Patterns to Predict the Popularity of Youtube Videos. WSDM, 365-374.
|
[4]
|
Shamma, D.A., Yew, J., Kennedy, L. and Churchill, E.F. (2011) Viral Actions: Predicting Video View Counts Using Synchronous Sharing Behaviors. ICWSM.
|
[5]
|
Nwana, A.O., Avestimehr, S. and Chen, T. (2013) A Latent Social Approach to Youtube Popularity Prediction. CoRR.
|
[6]
|
Khosla, A., Sarma, A.D. and Hamid, R. (2014) What Makes an Image Popular? IW3C2.
|
[7]
|
Figueiredo, F. (2013) On the Prediction of Popularity of Trends and Hits for User Generated Videos. Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, 741-746.
http://dx.doi.org/10.1145/2433396.2433489
|
[8]
|
Figueiredo, F., Benevenuto, F. and Almeida, J.M. (2011) The Tube over Time: Characterizing Popularity Growth of YouTube Videos. Proceedings of the Fourth ACM International Con-ference on Web Search and Data Mining, 745- 754. http://dx.doi.org/10.1145/1935826.1935925
|
[9]
|
Vanwinckelen, G. and Meert, W. (2014) Predicting the Popularity of Online Articles with Random Forests. ECML/ PKDD Discovery Challenge on Predictive Web Analytics, Nancy, September 2014.
|
[10]
|
Yu, B., Chen, M. and Kwok, L. (2011) Toward Predicting Popularity of Social Marketing Messages. Salerno, J., et al., Eds., SBP 2011, LNCS 6589, 317-324. http://dx.doi.org/10.1007/978-3-642-19656-0_44
|
[11]
|
He, X., et al. (2014) Practical Lessons from Predicting Clicks on Ads at Facebook. ADKDD’14, 24-27 August 2014.
http://dx.doi.org/10.1145/2648584.2648589
|
[12]
|
Cheng, J., Adamic, L.A., Dow, P.A., Kleinberg, J. and Leskovec, J. Can Cascades Be Predicted? WWW’14, Seoul, Republic of Korea.
|
[13]
|
Daume III, H. A Course in Machine Learning. Chapter 5.1, 69.
|