A Kind of Potential Practical Sensors of Metamaterial in Electromagnetic Flaw Nondestructive Testing
Zhanxian Xu
.
DOI: 10.4236/eng.2011.37090   PDF    HTML   XML   7,015 Downloads   10,665 Views   Citations

Abstract

We present a new kind of method of electromagnetic flaw nondestructive testing with coating of metamaterials and simulation near electromagnetic field property for test crack. The simulation of improving a Nondestructive testing (NDT) probe electromagnetic radiant property by Metamatrials (MMs) covering a tiny current element is investigated and analyzed using Ansoft HFSS based on finite element method (FEM), which permittivity and permeability are negative. Electromagnetic model: Ideal MMs ball shell with inner radius of 1 mm and outer radius variation, and the shell’s relative permittivity and relative permeability are all –3.0, dielectric loss tangent and magnetic loss tangent are all 0.1; and exciting current element length is with 0.3 mm, diameter 0.2 mm, value 1 mA at frequency 10 GHz; and simulation is with radiation boundary conditions. The simulating near electromagnetic field variety with ratio of inner radius and out radius, and so near or local field of MMs sensor on a surface crack, as well as comparing near field value of sensor with coating common material are finished. Results can be seen that MMs film sensor near electromagnetic field and radiation properties are obviously better than other two kinds of structures without coating medium and coating with common medium, and Metamaterial may be opened out some new kinds of sensors in electromagnetic flaw nondestructive testing for potential practical applications in future.

Share and Cite:

Z. Xu, "A Kind of Potential Practical Sensors of Metamaterial in Electromagnetic Flaw Nondestructive Testing," Engineering, Vol. 3 No. 7, 2011, pp. 750-754. doi: 10.4236/eng.2011.37090.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Soviet Physics Uspekhi, Vol. 10, No. 4, 1968, pp. 509-514. doi:10.1070/PU1968v010n04ABEH003699
[2] V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Uspekhi Fizicheskikh Nauk, Vol. 92, 1967, pp. 517-526.
[3] J. B. Pendry, A. J. Holden, D. J. Robbins, et al., “Low-Frequency Plasmons in Thin Wire Structures,” Journal of Physics Condensed Matter, Vol. 10, No. 22, 1998, pp. 4785-4809. doi:10.1088/0953-8984/10/22/007
[4] D. R. Smith, W. J. Padilla, D. C. Vier, et al., “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Physical Review Letters, Vol. 84, No. 18, May 2000, pp. 4184-4187. doi:10.1103/PhysRevLett.84.4184
[5] J. B. Pendry, A. J. Holden, D. J. Robbins, et al., “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 1999, pp. 2075-2081. doi:10.1109/22.798002
[6] D. R. Smith and N. Kroll, “Negative Refractive Index in Left-Handed Materials,” Physical Review Letters, Vol. 85, No. 14, 2000, pp. 2933-2936. doi:10.1103/PhysRevLett.85.2933
[7] R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, et al., “Microwave Transmission through a Two-Dimensional, Isotropic, Left-Handed Metamaterial,” Applied Physics Letters, Vol. 78, No. 4, 2001, pp. 489-491. doi:10.1063/1.1343489
[8] A. Shelby, D. R. Smith and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science, Vol. 292, No. 5514, 2001, pp. 77-79. doi:10.1126/science.1058847
[9] N. Engheta and R. W. Ziolkowski, “A Positive Future for Double-Negative Metamaterials,” IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 2005, pp. 1535-1556. doi:10.1109/TMTT.2005.845188
[10] S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, et al., “A Metamaterial for Directive Emission,” Physical Review Letters, Vol. 89, No. 21, 2002, Article ID: 213902. doi:10.1103/PhysRevLett.89.213902
[11] B. Li, B. Wu and C.-H. Liang, “Study on Hign Gain Circular Waveguide Array Antenna with Metamaterial Structure,” Progress in Electromagnetics Research, Vol. 60, 2006, pp. 207-219. doi:10.2528/PIER05121101
[12] A.-K. Hamid, “Axially Slotted Antenna on a Circular or Elliptic Cylinder Coated with Metamaterials,” Progress in Electromagnetics Research, Vol. 51, 2005, pp. 329- 341. doi:10.2528/PIER04082301
[13] J. B Pendry, A. J. Holden, W. J. Stewart, et al., “Extremely Low Frequency Plasmons in Metallic Microstructures,” Physical Review Letters, Vol. 76, No. 25, 1996, pp. 4773-4776. doi:10.1103/PhysRevLett.76.4773
[14] C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, et al., “Performance of a Negative Index of Refraction Lens,” Physical Review Letters, Vol. 84, No. 17, 2004, pp. 3232- 3234.
[15] J. B. Pendry and D. R. Smith, “Reversing Light with Negative Refraction,” Physics Today, Vol. 57, No. 6, 2004, pp. 37-43. doi:10.1063/1.1784272
[16] Z. X. Xu and W. G. Lin, “Controllable Absorbing Structure of Metamaterial at Microwave,” Progress in Electromagnetics Research, Vol. 69, 2007, pp. 117-125. doi:10.2528/PIER06120801
[17] W. M. Zhu, A. Q. Liu, X. M. Zhang, et al., “Switchable Magnetic Metamaterials Using Micromachining Processes”, Advanced Materials, Vol. 23, No. 15, 2011, pp. 1792-1796. doi:10.1002/adma.201004341
[18] P. N. Li, Y. W. Liu, Y. J. Meng, et al., “A Multifrequency Cloak with a Single Shell of Negative Index Metamaterials,” Chinese Physics Letters, Vol. 28, No. 6, 2011, Article ID: 064206. doi:10.1088/0256-307X/28/6/064206
[19] J. Hu, C. S. Yan and Q. C. Lin, “A New Patch Antenna with Metamaterial Cover,” Journal of Zhejiang University—Science A, Vol. 7, No. 1, 2006, pp. 89-94.
[20] H. S. Chen, “Metamaterials: Constitutive Parameters, Performance, and Chemical Methods for Realization,” Journal of Materials Chemistry, Vol. 21, No. 18, 2011, p. 6452. doi:10.1039/c0jm03138k
[21] L. Huang and H. S. Chen, “Multi-Band and Polarization Insensitive Metamaterial Absorber,” Progress in Electro- magnetic Research-PIER, Vol. 113, 2011, pp. 103-110.
[22] Z. Jaksic, N. Dalarsson and M. Maksimovic, “Electromagnetic Structures Containing Negative Refractive Index Metamaterials,” TELSIKS, Vol. 1, 2005, pp. 145-154.
[23] R. Marques, J. Martel, F. Mesa, et al., “Left-Handed- Media Simulation and Transmission of EM Waves in Subwavelength Split-Ring-Resonator-Loaded Metallic Waveguides,” Physical Review Letters, Vol. 89, No. 18, 2002, pp. 183901-183904. doi:10.1103/PhysRevLett.89.183901

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.