[1]
|
Christillin, P. (1986) Nuclear Compton Scattering. Journal of Physics G: Nuclear and Particle Physics, 12, 837-851. http://dx.doi.org/10.1088/0305-4616/12/9/008
|
[2]
|
Siegbahn, K.M. (1981) Electron Spectroscopy for Atoms, Molecules and Condensed Matter. Nobel Lecture, 8 December.
|
[3]
|
Einstein, A. (1905) Concerning an Heuristic Point of View toward the Emission and Transformation of Light. Annalen der Physik, 17, 132-148. http://dx.doi.org/10.1002/andp.19053220607
|
[4]
|
Becquerel, E. (1839) Mémoire sur les effets électriques produits sous l’influence des rayons solaires. Comptes Rendus, 9, 561-567.
|
[5]
|
Burdick, G.A. (1963) Energy Band Structure of Copper. Physical Review, 129, 138-150. http://dx.doi.org/10.1103/PhysRev.129.138
|
[6]
|
Newnham, R.E., Jang, S.J., Xu, M. and Jones, F. (1991) Fundamental Interaction Mechanisms between Microwaves and Matter. Ceramic Transactions, 21, 51-67.
|
[7]
|
Kliewer, K.L. and Fuchs, R. (1966) Optical Modes of Vibration in an Ionic Crystal Slab including Retardation. I. Nonradiative Region. Physical Review, 144, 495-503. http://dx.doi.org/10.1103/PhysRev.144.495
|
[8]
|
Kliewer, K.L. and Fuchs, R. (1966) Optical Modes of Vibration in an Ionic Crystal Slab including Retardation. II. Radiative Region. Physical Review, 150, 573-588. http://dx.doi.org/10.1103/PhysRev.150.573
|
[9]
|
Fuchs, R., Kliewer, K.L. and Pardee, W.J. (1966) Optical Properties of an Ionic Crystal Slab. Physical Review, 150, 589-596. http://dx.doi.org/10.1103/PhysRev.150.589
|
[10]
|
Berreman, D.W. (1963) Infrared Absorption at Longitudinal Optic Frequency in Cubic Crystal Films. Physical Review, 130, 2193-2198. http://dx.doi.org/10.1103/PhysRev.130.2193
|
[11]
|
Gest, H. (2002) History of the Word Photo Synthesis and Evolution of Its Definition. Photosynthesis Research, 73, 7-10. http://dx.doi.org/10.1023/A:1020419417954
|
[12]
|
Kuesco, G., Mauer, P.C., Yao, N.Y., Kubo, M., Noh, H.J., Lo, P.K., Park, H. and Lukin, M.D. (2013) Nanometre-Scale Thermometry in a Living Cell. Nature, 500, 54-59. http://dx.doi.org/10.1038/nature12373
|
[13]
|
Jameson, A.D., Tomaino, J.L., Lee, J.-S., Khitrova, G., Gibbs, H.M., Böttge, C.N., Klettke, A.C., Kira, M. and Koch, S.W. (2014) Direct Measurement of Light-Matter Energy Exchange inside a Microcavity. Optica, 1, 276-280. http://dx.doi.org/10.1364/OPTICA.1.000276
|
[14]
|
Kumar, A., Low, T., Fung, K.H., Avouris, P. and Fang, N.X. (2015) Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System. Nano Letters, 15, 3172-3180. http://dx.doi.org/10.1021/acs.nanolett.5b01191
|
[15]
|
Richter, C.-P., Rajguru, S., Stafford, R. and Stock, S.R. (2013) Radiant Energy during Infrared Neural Stimulation at the Target Structure. Proceedings of SPIE, 8565, Article ID: 85655P. http://dx.doi.org/10.1117/12.2013849
|
[16]
|
Eisen, D., Janssen, D., Chen, X., Choa, F.-S., Kotsov, D. and Fan, J. (2013) Closing a Venus Flytrap with Electrical and Mid-IR Photon Stimulations. Proceedings of SPIE, 8565, Article ID: 85655I. http://dx.doi.org/10.1117/12.2005351
|
[17]
|
Tritt, T.M., Böttner, H. and Chen, L. (2008) Thermoelectrics: Direct Solar Thermal Energy Conversion. MRS Bulletin, 33, 366-368. http://dx.doi.org/10.1557/mrs2008.73
|
[18]
|
Tritt, T.M. (2011) Thermoelectric Phenomena, Materials, and Applications. Annual Review of Materials Research, 41, 433-438. http://dx.doi.org/10.1146/annurev-matsci-062910-100453
|
[19]
|
Bell, L.E. (2008) Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science, 321, 1457-1461. http://dx.doi.org/10.1126/science.1158899
|
[20]
|
Vining, C.B. (2009) An Inconvenient Truth about Thermoelectrics. Nature Materials, 8, 83-85. http://dx.doi.org/10.1038/nmat2361
|
[21]
|
Schwab, Y., Mann, H.S., Lang, B.N., Lancaster, J.L., Parise, R.J., Vincent-Johnson, A.J. and Scarel, G. (2013) Infrared Power Generation in an Insulated Compartment. Complexity, 19, 44-55. http://dx.doi.org/10.1002/cplx.21484
|
[22]
|
Strogatz, S.H. (1994) Nonlinear Dynamics and Chaos. Westview Press, Cambridge, MA.
|
[23]
|
Jones, R.C. (1941) A New Calculus for the Treatment of Optical Systems. I. Description and Discussion of the Calculus. Journal of the Optical Society of America, 31, 488-493. http://dx.doi.org/10.1364/JOSA.31.000488
|
[24]
|
Jones, R.C. (1941) A New Calculus for the Treatment of Optical Systems. III. The Sohncke Theory of Optical Activity. Journal of the Optical Society of America, 31, 500-503. http://dx.doi.org/10.1364/JOSA.31.000500
|
[25]
|
Jones, R.C. (1942) A New Calculus for the Treatment of Optical Systems. IV. Journal of the Optical Society of America, 32, 486-493. http://dx.doi.org/10.1364/JOSA.32.000486
|
[26]
|
Korteweg, D.J. and de Vries, G. (1895) On the Change of Form of Long Waves Advancing in a Rectangular Canal and a New Type of Long Stationary Waves. Philosophical Magazine Series, 39, 422-443. http://dx.doi.org/10.1080/14786449508620739
|
[27]
|
Smaoui, N. and Zribi, M. (2009) A Finite Dimensional Control of the Dynamics of the Generalized Korteweg-de Vries Burgers Equation. Applied Mathematics & Information Sciences, 3, 207-221.
|
[28]
|
Jiang, Y., Tian, B., Liu, W.-J., Sun, K. and Qu, Q.-X. (2010) Soliton Solutions for a Variable-Coefficient Korteweg-de Vries Equation in Fluids and Plasmas. Physica Scripta, 82, Article ID: 055008. http://dx.doi.org/10.1088/0031-8949/82/05/055008
|
[29]
|
Vlieg-Hulstman, M. and Halford, W.D. (1995) Exact Solutions to KdV Equations with Variable Coefficients and/or Nonuniformities. Computers & Mathematics with Applications, 29, 39-47. http://dx.doi.org/10.1016/0898-1221(94)00205-Y
|
[30]
|
Mann, H.S., Schwab, Y., Lang, B.N., Lancaster, J.L., Parise, R.J. and Scarel, G. (2014) Effective Thermoelectric Power Generation in an Insulated Compartment. World Journal of Condensed Matter Physics, 4, 153-165. http://dx.doi.org/10.4236/wjcmp.2014.43020
|