[1]
|
Chen, S.X. and Huang, T.-M. (2007) Nonparametric Estimation of Copula Functions for Dependence Modeling. Canadian Journal of Statistics, 35, 265-282. http://dx.doi.org/10.1002/cjs.5550350205
|
[2]
|
Nelsen, R.B. (2006) An Introduction to Copulas. 2nd Edition, Springer, New York.
|
[3]
|
Mason, D.M. and Swanepoel, J.W.H. (2010) A General Result on the Uniform in Bandwidth Consistency of Kernel-Type Function Estimators. TEST, 20, 72-94. http://dx.doi.org/10.1007/s11749-010-0188-0
|
[4]
|
Tsukahara, H. (2005) Semiparametric Estimation in Copula Models. The Canadian Journal of Statistics, 33, 357-375.
http://dx.doi.org/10.1002/cjs.5540330304
|
[5]
|
Scaillet, O. and Fermanian, J.-D. (2002) Nonparametric Estimation of Copulas for Time Series. FAME Research Paper No. 57. http://ssrn.com/abstract=372142
http://dx.doi.org/10.2139/ssrn.372142
|
[6]
|
Genest, C. and Rivest, L. (1993) Statistical Inference for Archimedean Copulas. Journal of the American Statistical Association, 88, 1034-1043. http://dx.doi.org/10.1080/01621459.1993.10476372
|
[7]
|
Deheuvels, P. (1979) La fonction de dépendence empirique et ses propriétés. Un test non paramétrique. d’indépendance. Bulletin Royal Belge de l’Académie des Sciences, 65, 274-292.
|
[8]
|
Fermanian, J., Radulovic, D. and Wegkamp, M. (2004) Weak Convergence of Empirical Copula Processes. International Statistical Institute (ISI) and Bernoulli Society for Mathematical Statistics and Probability, 10, 847-860.
http://dx.doi.org/10.3150/bj/1099579158
|
[9]
|
Gijbels, I. and Mielniczuk, J. (1990) Estimation of the Density of a Copula Function. Communications in Statistics, Series A, 19, 445-464. http://dx.doi.org/10.1080/03610929008830212
|
[10]
|
Omelka, M., Gijbels, I. and Veraverbeke, N. (2009) Improved Kernel Estimators of Copulas: Weak Convergence and Goodness-of-Fit Testing. The Annals of Statistics, 37, 3023-3058. http://dx.doi.org/10.1214/08-AOS666
|
[11]
|
Dony, J. (2007) On the Uniform in Bandwidth Consistency of Kernel-Type Estimators and Conditional. Proceedings of the European Young Statisticians Meeting, Castro Urdiales, 10-14 September 2007.
|
[12]
|
Einmahl, U. and Mason, D.M. (2005) Uniform in Bandwidth Consistency of Kernel-Type Function Estimators. The Annals of Statistics, 33, 1380-1403. http://dx.doi.org/10.1214/009053605000000129
|
[13]
|
Deheuvels, P. and Mason, D.M. (2004) General Asymptotic Confidence Bands Based on Kernel-Type Function Estimators. Statistical Inference Stochastic Process, 7, 225-277. http://dx.doi.org/10.1023/B:SISP.0000049092.55534.af
|
[14]
|
Zari, T. (2010) Contribution à l’étude du processus empirique de copule. Thèse de doctorat, Université Paris, Paris, 6.
|
[15]
|
Wichura, M.J. (1973) Some Strassen-Type Laws of the Iterated Logarithm for Multiparameter Stochastic Processes with Independent Increments. The Annals of Probability, 1, 272-296. http://dx.doi.org/10.1214/aop/1176996980
|
[16]
|
van der Vaart, A.W. and Wellner, J.A. (1996) Weak Convergence and Empirical Processes. Springer, New York.
http://dx.doi.org/10.1007/978-1-4757-2545-2
|
[17]
|
Lo, G.S., Sall, S.T. and Mergane, P.D. (2015) Functional Weak Laws for the Weighted Mean Losses or Gains and Applications. Applied Mathematics, 6, 847-863. http://dx.doi.org/10.4236/am.2015.65079
|