A Prediction Method for In-Plane Permeability and Manufacturing Applications in the VARTM Process

Abstract Full-Text HTML Download Download as PDF (Size:1552KB) PP. 691-699
DOI: 10.4236/eng.2011.37082    4,834 Downloads   8,748 Views   Citations

ABSTRACT

VARTM (Vacuum Assisted Resin Transfer Molding) is a popular method for manufacturing large-scaled, single-sided mold composite structures, such as wind turbine blades and yachts. Simulation to find the proper infusion scenario before manufacturing is essential to avoid dry spots as well as incomplete saturation and various fiber weaves with different permeability affect numerical simulation tremendously. This study focused on deriving the in-plane permeability prediction method for FRP (Fiber Reinforced Plastics) laminates in the VARTM process by experimental measurements and numerical analysis. The method provided an efficient way to determine the permeability of laminates without conducting lots of experiments in the future. In-plane permeability imported into the software, RTM-Worx, to simulate resin flowing pattern before the infusion experiments of a 3D ship hull with two different infusion scenarios. The close agreement between experiments and simulations proved the correctness and applicability of the prediction method for the in-plane permeability.

Cite this paper

Y. Lee, Y. Jhan, C. Chung and Y. Hsu, "A Prediction Method for In-Plane Permeability and Manufacturing Applications in the VARTM Process," Engineering, Vol. 3 No. 7, 2011, pp. 691-699. doi: 10.4236/eng.2011.37082.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. Pfund, “Resin Infusion in the US Marine Industry,” Reinforced Plastics, Vol. 38, No. 1, 1994, pp. 32-34. doi:10.1016/0034-3617(94)90021-3
[2] C. Williams, J. Summerscales and S. Grove, “Resin Infusion under Flexible Tooling (RIFT): A Review,” Composite Part A-Applied Science and Manufacturing, Vol. 27, No. 7, 1996, pp. 517-524. doi:10.1016/1359-835X(96)00008-5
[3] W. D. Brouwer, E. C. F. C. van Herpt and M. Labordus, “Vacuum Injection Moulding for Large Structural Applications,” Composite Part A-Applied Science and Manufacturing, Vol. 34, No. 6, 2003, pp. 551-558. doi:10.1016/S1359-835X(03)00060-5
[4] W. B. Young, K. Han, L. H. Fong and L. J. Lee, “Flow Simulation in Molds with Preplaced Fiber Mats,” Polymer Composites, Vol. 12, No. 6, 1991, pp. 391-403. doi:10.1002/pc.750120604
[5] L. J. Lee, W. B. Young and R. J. Lin, “Mold Filling and Curing Modeling of RTM and SCRIMP Processes,” Composite Structures, Vol. 27, No. 1-2, 1994, pp. 109- 120. doi:10.1016/0263-8223(94)90072-8
[6] R. V. Mohan, D. R. Shires, K. K. Tamma and N. D. Ngo, “Flow Channels/Fiber Impregnation Studies for the Process Modeling/Analysis of Complex Engineering Structures Manufactured by Resin Transfer Molding,” Polymer Composites, Vol. 19, No. 5, 1998, pp. 527-542. doi:10.1002/pc.10127
[7] X. Sun, S. Li and L. J. Lee, “Molding Filling Analysis in Vacuum-Assisted Resin Transfer Molding, Part I: Scrimp Based on a High-Permeable Medium,” Polymer Composites, Vol. 19, No. 6, 1998, pp. 807-817. doi:10.1002/pc.10155
[8] J. Ni, S. J. Li, X. D. Sun and L. J. Lee, “Mold Filling Analysis in Vacuum-Assisted Resin Transfer Molding. Part II: SCRIMP Based on Grooves,” Polymer Composites, Vol. 19, No. 6, 1998, pp. 818-829. doi:10.1002/pc.10156
[9] A. Koorevaar, “Simulation of Liquid Injection Molding,” Proceedings of 23rd SAMPE Europe Conference, Paris, 9-11 April 2002.
[10] A. Koorevaar, “Fast, Accurate, Reliable 3D Reactive RTM Simulation,” Proceedings of ISCM 2002 Conference, Flevoland, 30-31 May 2002.
[11] T. J. Wang, C. H. Wu and L. J. Lee, “In-Plane Permeability Measurement and Analysis in Liquid Composite Molding,” Polymer Composites, Vol. 15, No. 4, 1994, pp. 278-288. doi:10.1002/pc.750150406
[12] C. Demaria, E. Ruiz and F. Trochu, “In-Plane Anisotropic Permeability Characterization of Deformed Woven Fabrics by Unidirectional Injection. Part I: Experimental Results,” Polymer Composites, Vol. 28, No. 6, 2007, pp. 797-811. doi:10.1002/pc.20107
[13] C. Demaria, E. Ruiz and F. Trochu, “In-Plane Anisotropic Permeability Characterization of Deformed Woven Fabrics by Unidirectional Injection. Part II: Prediction Model and Numerical Simulations,” Polymer Composites, Vol. 28, No. 6, 2007, pp. 812-827. doi:10.1002/pc.20108
[14] C. H. Wu, T. J. Wang and L. J. Lee, “Trans-Plane Permeability Measurement and Its Application in Liquid Composite Molding,” Polymer Composites, Vol. 15, No. 4, 1994, pp. 289-298. doi:10.1002/pc.750150407
[15] P. B. Nedanov and S. G. Advani, “A Method to Determine 3D Permeability of Fibrous Reinforcements,” Journal of Composite Materials, Vol. 36, No. 2, 2002, pp. 241-254. doi:10.1177/0021998302036002462
[16] V. M. A. Calado and S. G. Advani, “Effective Average Permeability of Multi-Layer Preforms in Resin Transfer Molding,” Composites Science and Technology, Vol. 56, No. 5, 1996, pp. 519-531. doi:10.1016/0266-3538(96)00037-1
[17] R. Chen, C. Dong, Z. Liang, C. Zhang and B. Wang, “Flow Modeling and Simulation for Vacuum Assisted Resin Transfer Molding Process with the Equivalent Permeability Method,” Polymer Composites, Vol. 25, No. 2, 2004, pp. 146-164. doi:10.1002/pc.20012
[18] C. Dong, “An Equivalent Medium Method for the Vacuum Assisted Resin Transfer Molding Process Simulation,” Journal of Composite Materials, Vol. 40, No. 13, 2006, pp. 1193-1213. doi:10.1177/0021998305057429
[19] B. R. Gebart, “Permeability of Unidirectional Reinforcements for RTM,” Journal of Composite Materials, Vol. 26, No. 8, 1992, pp. 1100-1133. doi:10.1177/002199839202600802
[20] P. Simacek, V. Neacsu and S. G. Advani, “A Phenomenological Model for Fiber Tow Saturation of Dual Scale Fabrics in Liquid Composite Molding,” Polymer Composites, Vol. 31, No. 11, 2010, pp. 1881-1889. doi:10.1002/pc.20982
[21] S. S. Rahatekar and J. A. Roux, “Numerical Simulation of Pressure Variation and Resin Flow in Injection Pultrusion,” Journal of Composite Materials, Vol. 37, No. 12, 2003, pp. 1067-1082. doi:10.1177/0021998303037012005
[22] W. D. Carrier Ⅲ, “Goodbye, Hazen; Hello, Kozeny-Carman,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 11, 2003, pp. 1054- 1056. doi:10.1061/(ASCE)1090-0241(2003)129:11(1054)
[23] K. T. Hsiao, J. W. Gillespie Jr., S. G. Advani and B. K. Fink, “Role of Vacuum Pressure and Port Locations on Flow Front Control for Liquid Composite Molding Process,” Polymer Composites, Vol. 22, No. 5, 2001, pp. 660- 667. doi:10.1002/pc.10568
[24] A. R. Nalla, M. Fuqua, J. Glancey and B. Lelievre, “A Multi-Segment Injection Line and Real-Time Adaptive, Model-Based Controller for Vacuum Assisted Resin Transfer Molding,” Composite Part A-Applied Science and Manufacturing, Vol. 38, No. 3, 2007, pp.1058-1069. doi:10.1016/j.compositesa.2006.06.021
[25] K. Han, S. Jiang, C. Zhang and B. Wang, “Flow Modeling and Simulation of SCRIMP for Composites Manufacturing,” Composite Part A-Applied Science and Manufacturing, Vol. 31, No. 1, 2000, pp. 79-86. doi:10.1016/S1359-835X(99)00053-6
[26] M. K. Kang, W. I. Lee and H. T. Hahn, “Analysis of Vacuum Bag Resin Transfer Molding Process,” Composite Part A-Applied Science and Manufacturing, Vol. 32, No. 11, 2001, pp. 1553-1560. doi:10.1016/S1359-835X(01)00012-4

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.