Share This Article:

Large Redshifts in Emission and Excitation from Eu2+-Activated Sr2SiO4 and Ba2SiO4 Phosphors Induced by Controlling Eu2+ Occupancy on the Basis on Crystal-Site Engineering

Abstract Full-Text HTML XML Download Download as PDF (Size:834KB) PP. 326-333
DOI: 10.4236/opj.2015.511031    4,122 Downloads   4,775 Views   Citations

ABSTRACT

The photoluminescence properties of Eu2+-activated α’-Sr2SiO4 and α’-Ba2SiO4 with a high Eu2+ concentration were investigated. In the case of Sr2-xEuxSiO4, emission was shifted from 585 to 611 nm with increasing the total Eu2+ concentration (x) from 0.1 to 0.8. This trend was similar to that in Ba2-xEuxSiO4, where the emission was shifted from 513 to 545 nm. The large redshifts in both the excitation and emission spectra were discussed in terms of the Eu2+ occupancies on two kinds of M sites and their local structural changes (M: Sr and Ba).

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Sato, Y. , Kuwahara, H. , Kato, H. , Kobayashi, M. , Masaki, T. and Kakihana, M. (2015) Large Redshifts in Emission and Excitation from Eu2+-Activated Sr2SiO4 and Ba2SiO4 Phosphors Induced by Controlling Eu2+ Occupancy on the Basis on Crystal-Site Engineering. Optics and Photonics Journal, 5, 326-333. doi: 10.4236/opj.2015.511031.

References

[1] Hirosaki, N., Xie, R.-J., Kimoto, K., Sekiguchi, T., Yamamoto, Y., Suehiro, T. and Mitomo, M. (2005) Characterization and Properties of Green-Emitting β-SiAlON:Eu2+ Powder Phosphors for White Light-Emitting Diodes. Applied Physical Letters, 86, Article ID: 211905.
[2] Shimomura, Y., Honma, T., Shigeiwa, M., Akai, T., Okamoto, K. and Kijima, N. (2007) Photoluminescence and Crystal Structure of Green-Emitting Ca3Sc2Si3O12:Ce3+ Phosphor for White Light Emitting Diodes. Journal of the Electrochemical Society, 154, J35-J38.
http://dx.doi.org/10.1149/1.2388856
[3] Yun, B.-G., Horikawa, T., Hanzawa, H. and Machida, K. (2010) Preparation and Luminescence Properties of Single-Phase BaSi2O2N2:Eu2+, a Bluish-Green Phosphor for White Light-Emitting Diodes. Journal of the Electrochemical Society, 157, J364-J370.
http://dx.doi.org/10.1149/1.3479763
[4] Uheda, K., Hirosaki, N., Yamamoto, Y., Naito, A., Nakajima, T. and Yamamoto, H. (2006) Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes. Electrochemical and Solid-State Letters, 9, H22-H25.
http://dx.doi.org/10.1149/1.2173192
[5] Watanabe, H., Yamane, H. and Kijima, N. (2008) Crystal Structure and Luminescence of Sr0.99Eu0.01AlSiN3. Journal of Solid State Chemistry, 181, 1848-1852.
http://dx.doi.org/10.1016/j.jssc.2008.04.017
[6] Xie, R.J., Hirosaki, N., Suehiro, T., Xu, F.F. and Mitomo, M. (2006) A Simple, Efficient Synthetic Route to Sr2Si5N8:Eu2+-Based Red Phosphors for White Light-Emitting Diodes. Chemistry of Materials, 18, 5578-5583.
http://dx.doi.org/10.1021/cm061010n
[7] Park, W.B., Singh, S.P., Yoon, C. and Sohn, K.-S. (2012) Eu2+ Luminescence from 5 Different Crystallographic Sites in a Novel Red Phosphor, Ca15Si20O10N30:Eu2+. Journal of Materials Chemistry, 22, 14068-14075.
http://dx.doi.org/10.1039/c2jm32032k
[8] Pust, P., Weiler, V., Hecht, C., Tücks, A., Wochnik, A.S., Henß, A., Wiechert, D., Scheu, C., Schmidt, P.J. and Schnick, W. (2014) Narrow-Band Red-Emitting Sr[LiAl3N4]:Eu2+ as a Next-Generation LED-Phosphor Material. Nature Materials, 13, 891-896.
http://dx.doi.org/10.1038/nmat4012
[9] Setlur, A.A. (2009) Phosphors for LED-Based Solid-State Lighting. The Electrochemical Society Interface, 18, 32-36.
http://test.electrochem.org/dl/interface/wtr/wtr09/wtr09_p032-036.pdf
[10] Daicho, H., Iwasaki, T., Enomoto, K., Sasaki, Y., Maeno, Y., Shinomiya, Y., Aoyagi, S., Nishibori, E., Sakata, M., Sawa, H., Matsuishi, S. and Hosono, H. (2012) A Novel Phosphor for Glareless White Light-Emitting Diodes. Nature Communications, 3, Article ID: 1132.
[11] Tezuka, S., Sato, Y., Komukai, T., Takatsuka, Y., Kato, H. and Kakihana, M. (2013) Eu2+-Activated CaSrSiO4: A New Red-Emitting Oxide Phosphor for White-Light-Emitting Diodes. Applied Physics Express, 6, Article ID: 072101.
[12] Kim, S.W., Hasegawa, T., Ishigaki, T., Uematsu, K., Toda, K. and Sato, M. (2013) Efficient Red Emission of Blue-Light Excitable New Structure Type NaMgPO4:Eu2+ Phosphor. ECS Solid State Letters, 2, R49-R51.
http://dx.doi.org/10.1149/2.004312ssl
[13] Huang, C.-H., Liu, W.-R., Chan, T.-S. and Lai, Y.-T. (2014) Orangish-Yellow-Emitting Ca3Si2O7:Eu2+ Phosphor for Application in Blue-Light Based Warm-White LEDs. Dalton Transactions, 43, 7917-7923.
http://dx.doi.org/10.1039/c4dt00076e
[14] Sato, Y., Kato, H., Kobayashi, M., Masaki, T., Yoon, D.-H. and Kakihana, M. (2014) Tailoring of Deep-Red Luminescence in Ca2SiO4:Eu2+. Angewandte Chemie International Edition, 53, 7756-7759.
http://dx.doi.org/10.1002/anie.201402520
[15] Kawano, Y., Kim, S.W., Ishigaki, T., Uematsu, K., Toda, K., Takaba, H. and Sato, M. (2014) Site Engineering Concept of Ce3+-Activated Novel Orange-Red Emission Oxide Phosphors. Optical Materials Express, 4, 1770-1774.
http://dx.doi.org/10.1364/OME.4.001770
[16] Funakubo, H., Watanabe, T., Kojima, T., Sakai, T., Noguchi, Y., Miyayama, M., Osada, M., Kakihana, M. and Saito, K. (2003) Property Design of Bi4Ti3O12-based Thin Films using a Site-engineered Concept. Journal of Crystal Growth, 248, 180-185.
http://dx.doi.org/10.1016/s0022-0248(02)02047-x
[17] Catti, M., Gazzoni, G. and Ivaldi, G. (1983) Structures of Twinned β-Sr2SiO4 and of α’-Sr1.9Ba0.1SiO4. Acta Crystallographica Section C: Structural Chemistry, 39, 29-34.
http://dx.doi.org/10.1107/S0108270183003492
[18] Kakihana, M., Kim, J., Komukai, T., Kato, H., Sato, Y., Kobayashi, M. and Takatsuka, Y. (2013) Exploration of New Phosphors Using a Mineral-Inspired Approach in Combination with Solution Parallel Synthesis. Optics and Photonics Journal, 3, 5-12.
http://dx.doi.org/10.4236/opj.2013.36A002
[19] Poort, S.H.M., Janssen, W. and Blasse, G. (1997) Optical Properties of Eu2+-Activated Orthosilicates and Orthophosphates. Journal of Alloys and Compounds, 260, 93-97.
[20] Izumi, F. and Momma, K. (2007) Three-Dimensional Visualization in Powder Diffraction. Solid State Phenomena, 130, 15-20.
http://dx.doi.org/10.4028/www.scientific.net/SSP.130.15
[21] Shannon, R.D. (1976) Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. ActaCrystallographica Section A: Foundations and Advances, 32, 751-767.
http://dx.doi.org/10.1107/S0567739476001551
[22] Momma, K. and Izumi, F. (2011) VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. Journal of Applied Crystallography, 44, 1272-1276.
http://dx.doi.org/10.1107/S0021889811038970
[23] Swanson, D. and Peterson, R. (1980) Polyhedral Volume Calculations. Canadian Mineralogist, 18, 153-156.
http://www.canmin.org/content/18/2/153.full.pdf+html
[24] Baur, W.H. (1974) The Geometry of Polyhedral Distortions. Predictive Relationships for the Phosphate Group. Acta Crystallographica Section B: Structural Crystallography and Crystal Engineering and Materials, 30, 1195-1215.
http://dx.doi.org/10.1107/S0567740874004560
[25] Denault, K.A., Brgoch, J., Gaultois, M.W., Mikhailovsky, A., Petry, R., Winkler, H., Denbaars, S.P. and Seshadri, R. (2014) Consequences of Optimal Bond Valence on Structural Rigidity and Improved Luminescence Properties in SrxBa2-xSiO4:Eu2+ Orthosilicate Phosphors. Chemistry of Materials, 26, 2275-2282.
http://dx.doi.org/10.1021/cm500116u

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.