Hajós-Property for Direct Product of Groups ()
Abstract
We study decomposition of finite Abelian groups into subsets and show by examples a negative answer to the question of whether Hajós-property is inherited by direct product of groups which have Hajós-property.
Share and Cite:
Amin, K. (2015) Hajós-Property for Direct Product of Groups.
Advances in Linear Algebra & Matrix Theory,
5, 139-142. doi:
10.4236/alamt.2015.54013.
Conflicts of Interest
The authors declare no conflicts of interest.
References
[1]
|
Minkowski, H. (1896) Geometrie der Zahlen. Teubner, Leipzig.
|
[2]
|
Hajos, G. (1949) Sur la factorsation des groups aeliens. Casopis, 74, 157-162.
|
[3]
|
Rédei, L. (1965) Die neue Theoreie der endlichen abelschen Gruppen und Verall-geomeinerung des Hauptsatze von Hajós. Acta Mathematica Academiae Scientiarum Hungaricae, 16, 329-373. http://dx.doi.org/10.1007/BF01904843
|
[4]
|
De Bruijn, N.G. (1950) On Bases for the Set of Integers. Publicationes, Mathematicae, 232-242.
|
[5]
|
Amin, K. (2014) Constructing Single-Error-Correcting Codes Using Factorization of Finite Abelian Groups. International Journal of Algebra, 8, 311-315.
|
[6]
|
Vuza, D.T. (1990-91) Supplementary Sets and Regular Complementary Unending Canons. Perspectives of New Music, 23.
|
[7]
|
Sands, A.D. (1962) Factorization of Abelian Groups. The Quarterly Journal of Mathematics, 13, 45-54. http://dx.doi.org/10.1093/qmath/13.1.45
|
[8]
|
Amin, K. (1997) The Hajos-n-Property for finite p-Groups. PUMA, 1-12.
|
[9]
|
Sands, A.D. (1959) Factorization of Abelian Groups. The Quarterly Journal of Mathematics, 10, 81-91. http://dx.doi.org/10.1093/qmath/10.1.81
|