Connection between the Linoleic Acid and Psychopathology: A Symmetry-Breaking Phenomenon in the Brain?


In this paper we discuss the role of the fatty acid composition of brain cells and in platelets in the emergence of psychiatric disorders such as major depression and the bipolar disorder. We argue that the linoleic acid concentration plays the role of a control parameter and there is a critical value of the linoleic acid concentration that determines a transition from healthy mental state to a pathological state. We draw an analogy with symmetry breaking in physical systems where at a bifurcation point on the phase diagram, infinitesimal perturbations to the state of the system result in a transition to a new global attractor state. This is in contrast to the situation away from the critical point where cause and effect are usually found in a linear or almost linear relationship. This observation may have major implications for both diagnostics and therapeutics of mental disorders when viewed as triggered by molecular causes.

Share and Cite:

Cocchi, M. , Minuto, C. , Tonello, L. and Tuszynski, J. (2015) Connection between the Linoleic Acid and Psychopathology: A Symmetry-Breaking Phenomenon in the Brain?. Open Journal of Depression, 4, 41-52. doi: 10.4236/ojd.2015.44005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Abbott, S. K., Elsea, P. L., Atkins, T. A., & Hulberta, A. J. (2012). Fatty Acid Composition of Membrane Bilayers: Importance of Diet Polyunsaturated Fat Balance. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1818, 1309-1317.
[2] Abeles, M. (1991). Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge: Cambridge University Press.
[3] Anderson, P. W. (1997). Basic Notions of Condensed Matter Physics. Reading: Addison-Wesley.
[4] Benedetti, S., Bucciarelli, S., Canestrari, F., Catalani, S., Colomba, M. S., Gregorini, A., Mandolini, S., Marconi, V., Mastrogiacomo, A. R., Rasenick, M., Silvestri, R., Tagliamonte, M. C., Tonello, L., Venanzini, R., & Cocchi, M. (2012). Molecular Changes in Mood Disorders Results of the Marche Region Special Project. NeuroQuantology, 10, S1-S28.
[5] Benedetti, S., Bucciarelli, S., Canestrari, F., Catalani, S., Mandolini, S., Marconi, V., Mastrogiacomo, A., Silvestri, R., Tagliamonte, M., Venanzini, R., Caramia, G., Gabrielli, F., Tonello, L., & Cocchi, M. (2014). Platelet’s Fatty Acids and Differential Diagnosis of Major Depression and Bipolar Disorder through the Use of an Unsupervised Competitive-Learning Network Algorithm (SOM). Open Journal of Depression, 3, 52-73.
[6] Bowden, C. L. (2001). Strategies to Reduce Misdiagnosis of Bipolar Depression. Psychiatric Services, 52, 51-55.
[7] Brown, J. A., & Tuszynski, J. A. (1997). Dipole Interactions in Axonal Microtubules as a Mechanism of Signal Propagation. Physical Review E, 56, 5834-5840.
[8] Burr, G. O., & Burr, M. M. (1929). A New Deficiency Disease Produced by the Rigid Exclusion of Fat from the Diet. Journal of Biological Chemistry, 82, 345-367.
[9] Camacho, A., & Dimsdale, J. E. (2000). Platelets and Psychiatry: Lessons Learned from Old and New Studies. Psychosomatic Medicine, 62, 326-336.
[10] Carneheim, C., Cannon, B., & Nedergaard, J. (1989). Rare Fatty Acids in Brown Fat Are Substrates for Thermogenesis during Arousal from Hibernation. The Wenner-Gren Institute, University of Stockholm, S-106 91 Stockholm, Sweden.
[11] Cocchi, M. (1993). The Significance of n-3 Fatty Acid in Fetal/Neonatal Development and Some Alternative Sources. Proceedings of the Nutrition Society, 52, 224A.
[12] Cocchi, M., & Minuto, C. (2015). Linoleic Acid: A Milestone in Brain Evolution? Humane Evolution, 30, 245-257.
[13] Cocchi, M., & Noble, R. C. (1992). Il ruolo del DHA nello sviluppo embrionale. Nutrizione, 5, 23-26.
[14] Cocchi, M., & Tonello, L. (2010a). Running the Hypothesis of a Bio Molecular Approach to Psychiatric Disorder Characterization and Fatty Acids Therapeutical Choices. Annals of General Psychiatry, 9, S26.
[15] Cocchi, M., & Tonello, L. (2010b). Bio Molecular Considerations in Major Depression and Ischemic Cardiovascular Disease. Central Nervous System Agents in Medicinal Chemistry, 10, 97-107.
[16] Cocchi, M., Gabrielli, F., & Tonello, L. (2013). Platelet’s Fatty Acids Secrets in Coronary Artery Disease (CAD). Letter to the Editor, BMJ, 28 October 2013.
[17] Cocchi, M., Gabrielli, F., Pessa, E., Pregnolato, M., Tonello, L., & Zizzi, P. (2012). Major Depression and Bipolar Disorder: The Concept of Symmetry Breaking. NeuroQuantology, 10, 676-687.
[18] Cocchi, M., Tonello, L., & Gabrielli, F. (2012a). Considerations on Blood Platelets: A Neuron’s Mirror for Mood Disorders? Open Journal of Blood Diseases, 2, 22-29.
[19] Cocchi, M., Tonello, L., & Gabrielli, F. (2012b). Possible Roles of Cell Membrane & Cytoskeleton in Quantum Aspect of Psychiatry. Journal of Consciousness Exploration & Research, 3, 1082-1100.
[20] Cocchi, M., Tonello, L., & Gabrielli, F. (2012c). Molecular Uniqueness of Major Depression: Biological Remarks and Theoretical Implications. Journal of Consciousness Exploration & Research, 3, 380-391.
[21] Cocchi, M., Tonello, L., & Lercker, G. (2010). Fatty Acids, Membrane Viscosity, Serotonin and Ischemic Heart Disease. Lipids in Health and Disease, 9, 97.
[22] Cocchi, M., Tonello, L., & Rasenick, M. M. (2010). Human Depression: A New Approach in Quantitative Psychiatry. Annals of General Psychiatry, 9, 25.
[23] Cocchi, M., Tonello, L., Gabrielli, F., & Minuto, C. (2014). Human and Animal Brain Phospholipids Fatty Acids, Evolution and Mood Disorders. Journal of Phylogenetics & Evolutionary Biology, 2, 128.
[24] Cocchi, M., Tonello, L., Tsaluchidu, S., & Puri, B. K. (2008). The Use of Artificial Neural Networks to Study Fatty Acids in Neuropsychiatric Disorders. BMC Psychiatry, 8, S3.
[25] Craddock, T. J. A., Hameroff, S. R., & Tuszynski, J. A. (2012). Cytoskeletal Signaling: Is Molecular Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation. PLoS Computational Biology, 8, e1002421.
[26] Craddock, T. J. A., Priel, A., & Tuszynski, J. A. (2014). Keeping Time: Could Quantum Beating in Microtubules Be the Basis for the Neural Synchrony Related to Consciousness? Journal of Integrative Neuroscience, 13, 293-311.
[27] Craddock, T. J. A., St. George, M., Freedman, H., Barakat, K. H., Damaraju, S., & Tuszynski, J. A. (2012). Computational Predictions of Volatile Anesthetic Interactions with the Microtubule Cytoskeleton: Implications for Side Effects of General Anesthesia. PLoS ONE, 7, e37251.
[28] Da Prada, M., Cesura, A. M., Launay, J. M., & Richards, J. G. (1988). Platelets as a Model for Neurones? Cellular and Molecular Life Sciences, 44, 115-126.
[29] De Mar, J. C. (2006). Brain Elongation of Linoleic Acid Is a Negligible Source of Arachidonic Acid in the Brain Phospholipid of Adult Rats. Biochimica et Biophysica Acta, 1761, 1050-1059.
[30] Donati, R. J., & Rasenick, M. M. (2003). G Protein Signaling and the Molecular Basis of Antidepressant Action. Life Sciences, 73, 1-17.
[31] Friesen, D. E., Craddock, T. J. A., Karla, A., & Tuszynski, J. A. (2015). Biological Wires, Communication Systems and Implications for Disease. Biosystems, 127, 14-27.
[32] Gray, J., Groeschler, S., Le, T., & Gonzalez, Z. (2002). Membrane Structure (SWF). Davidson, NC: Davidson College.
[33] Hameroff, S., Nip, A., Porter, M., & Tuszynski, J. A. (2002). Conduction Pathways in microtubules. Biological quantum Computation, and Consciousness. Biosystems, 64, 149-168.
[34] Hornstra, G., Al, M. D. M., van Houwelingen, A. C., & Foreman-van Drongelen, M. M. H. P. (1995). Essential Fatty Acid in Pregnancy and Early Humane Development. European Journal of Obstetrics & Gynecology and Reproductive Biology, 61, 57-62.
[35] Kim, H. L., Plaisant, O., Leboyer, M., Gay, C., Kamal, L., Devynck, M. A., & Meyer, P. (1982). Reduction of Platelet Serotonin in Major Depression (Endogenous Depression). Comptes Rendus des Seances de l’Academie des Sciences, Serie III, 295, 619-622.
[36] Kohonen, T. (2000). Self Organizing Maps (3rd ed.). Berlin: Springer-Verlag.
[37] Lalovic, A., Levy, E., Canetti, L., Sequeira, A., Montoudis, A., & Turecki, G. (2007). Fatty Acid Composition in Post-Mortem Brains of People Who Completed Suicide. Journal of Psychiatry & Neuroscience, 32, 363-370.
[38] Marsh, D. (2010). Structural and Thermodynamic Determinants of Chain-Melting Transition Temperatures for Phospholipid and Glycolipids Membranes. Biochimica et Biophysica Acta, 1798, 40-51.
[39] Mouritsen, O. (2005). Life—As a Matter of Fat: The Emerging Science of Lipidomics. Berlin: Springer.
[40] Musselman, D. L., Tomer, A., Manatunga, A. K., Knight, B. T., Porter, M. R., Kasey, S., Marzec, U., Harker, L. A., & Nemeroff, C. B. (1996). Exaggerated Platelet Reactivity in Major Depression. American Journal of Psychiatry, 153, 1313-1317.
[41] Neuringer, M., Connors, W. E., Lin, D. S., Barstard, L., & Luck, S. (1986). Biochemical and Functional Effects of Prenatal and Postnatal Omega 3 Fatty Acid Deficiency on Retina and Brain in Rhesus Monkeys. Proceedings of the National Academy of Sciences of the United States of America, 83, 4021-4025.
[42] Nicholls, J. G., Martin, A. R., Fuchs, P. A. Brown, D. A., Diamond, M. E., & Weisblat, D. (2011). From Neuron to Brain (5th ed.). New York: Sinauer Associates.
[43] Noble, R. C., & Cocchi, M. (1990). Lipid Metabolism and the Neonatal Chicken. Progress in Lipid Research, 29, 107-140.
[44] Plein, H., & Berk, M. (2001). The Platelet as a Peripheral Marker in Psychiatric Illness. Human Psychopharmacology, 16, 229-236.
[45] Pletscher, A., & Laubscher, A. (1980). Blood Platelets as Models for Neurons: Uses and Limitations. Journal of Neural Transmission Supplementa, 16, 7-16.
[46] Rasenick, M. M., Donati, R. J., Popova, J. S., & Yu, J. Z. (2004). Tubulin as a Regulator of G-Protein Signaling. Methods in Enzymology, 390, 389-403.
[47] Sachdev, S. (2011). Quantum Phase Transitions (2nd ed.). Cambridge: Cambridge University Press.
[48] Stachowska, E., Gutowska, I., Dolegowska, B., Chlubek, D., Bober, J., Rac, M., Gutowski, P., Szumilowicz, H., & Turowski, R. (2004). Exchange of Unsaturated Fatty Acids between Adipose Tissue and Atherosclerotic Plaque Studied with Artificial Neural Networks. Prostaglandins, Leukotrienes and Essential Fatty Acids, 70, 59-66.
[49] Stahl, S. M. (1977). The Human Platelet. A Diagnostic and Research Tool for the Study of Biogenic Amines in Psychiatric and Neurologic Disorders. Archives of General Psychiatry, 34, 509-516.
[50] Svennerholm, L. (1968). Distribution and Fatty Acid Composition of Phosphoglycerides in Normal Human Brain. Journal of Lipid Research, 9, 570-579.
[51] Takahashi, S. (1976). Reduction of Blood Platelet Serotonin Levels in Manic and Depressed Patients. Folia Psychiatrica et Neurologica Japonica, 30, 476-486.
[52] Tonello, L., & Cocchi, M. (2010). The Cell Membrane: Is It a Bridge from Psychiatry to Quantum Consciousness? NeuroQuantology, 8, 54-60.
[53] Uauy, R. D., Birch, D. G., Birch, E. E., Tyson, J. E., & Hoffman, D. R. (1990). Effect of Dietary Omega-3 Fatty Acids on Retinal Function of Very-Low-Birth-Weight Neonates. Pediatric Research, 28, 485-492.
[54] Woolf, N. J., Priel, A., & Tuszynski, J. A. (2010a). Nanoneuroscience: Structural and Functional Roles of the Neuronal Cytoskeleton in Health and Disease. Heidelberg: Springer Verlag.
[55] Woolf, N. J., Priel, A., & Tuszynski, J. A. (2010b). Neural Cytoskeleton Correlates of Learning and Memory. Journal of Biological Physics, 36, 3-21.
[56] Yang, X. G., Sheng, W. W,, Sun, G. Y., & Lee, J. C. M. (2011). Effects of Fatty Acid Unsaturation Numbers on Membrane Fluidity and α-Secretase-Dependent Amyloid Precursor Protein Processing. Neurochemistry International, 58, 321-329.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.