Effect of Gamma Irradiation and Selection with Fungus Filtrate (Rhizoctonia solani Kuhn) on the in Vitro Culture of Common Bean (Phaseolus vulgaris)
Laura Y. Solís-Ramos1*, Marta Valdez-Melara1, Ricardo Alvarado-Barrantes2, Floribeth Mora-Umaña3, Eduardo Hernández-Jiménez4, Natalia Barboza-Vargas4, Pilar Ramírez-Fonseca4
1Plant Biotechnology & Genetic Transformation, School of Biology, University of Costa Rica, San Pedro, Costa Rica.
2School of Statistic, University of Costa Rica, San Pedro, Costa Rica.
3Interagency Cooperation Agreement between the Research Center for Cellular and Molecular Biology (CIBCM), University of Costa Rica and the Phytosanitary Agency of the Ministry of Agriculture and Livestock (MAG), San José, Costa Rica.
4Research Center for Cellular and Molecular Biology (CIBCM), University of Costa Rica, San Pedro, Costa Rica.
DOI: 10.4236/ajps.2015.616269   PDF   HTML   XML   3,065 Downloads   3,972 Views   Citations


The present investigation was undertaken to study the effect of gamma irradiation (dose from 10 to 100 Gy) and in vitro selection with fungus filtrate as selecting agent (concentration from 20% to 100%) on the susceptibility of the common bean to Rhizoctonia solani. The best results were found with a dose of 20 Gy or a concentration of 20% of fungus filtrate applied separately. These conditions were used to evaluate the combined effect of both approaches in a second experiment. The combined effect of irradiation and then selection adversely affected growth (height and roots) and survival of the in vitro plants. It may not be necessary to combine the variation generated by irradiation with the selection technique. For future assays we propose the application of: 1) gamma radiation, thereby inducing not only mutants with pathogen resistance, but also with other agronomic traits of interest. Later in the subculture MV4 potential fungus-resistant mutants will be evaluated in the field; or 2) selection pressure using fungus filtrate during three subcultures, which may be sufficient to induce the variation necessary to obtain in vitro plants resistant to fungus.

Share and Cite:

Solís-Ramos, L. , Valdez-Melara, M. , Alvarado-Barrantes, R. , Mora-Umaña, F. , Hernández-Jiménez, E. , Barboza-Vargas, N. and Ramírez-Fonseca, P. (2015) Effect of Gamma Irradiation and Selection with Fungus Filtrate (Rhizoctonia solani Kuhn) on the in Vitro Culture of Common Bean (Phaseolus vulgaris). American Journal of Plant Sciences, 6, 2672-2685. doi: 10.4236/ajps.2015.616269.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Broughton, W.J., Hernández, G., Blair, M., Beebe, S., Gepts, P. and Vanderleyden, J. (2003) Beans (Phaseolus spp.)— Model Food Legumes. Plant Soil, 252, 55-128.
[2] Varisai, M., Shamsudeen, S., Sung, J.M., Jeng, T.L. and Wang, C.S. (2006) Organogenesis of Phaseolus angularis L.: High Efficiency of Adventitious Shoot Regeneration from Etiolated Seedlings in the Presence of N6-Benzylaminopu- rine and Thidiazuron. Plant Cell Tissue Organ, 86, 187-199.
[3] Hernández, J.C., Araya, R. and Morales, A. (2001) Bribrí, nueva variedad de frijol rojo pequeño para Costa Rica. Agronomía Mesoamericana, 12, 15-24.
[4] Keinath, A.P., Batson, W.E., Caceres, J., Elliott, M.L., Sumner, D.R., Brannen, P.M., Rothrock, C.S., Huber, D.M., Benson, D.M., Conway, K.E., Schneider, R.M., Motsenbocker, C.E., Cubeta, M.A., Ownley, B.H., Canaday, C.H., Adams, P.D., Backman, P.A. and Fajardo, J. (2000) Evaluation of Biological and Chemical Seed Treatments to improve Stand of Snap Bean across the Southern United States. Crop Protection, 19, 501-509.
[5] Navarrete-Maya, R., Trejo-Albarrán, E., Navarrete-Maya, J., Prudencio-Sains, J.M. and Acosta Gallegos, J.A. (2009) Reacción de genotipos de frijol a Fusarium spp. y Rhizoctonia solani bajo condiciones de campo e invernadero. Agricultura Técnica en México, 35, 455-466.
[6] Nerey, Y., Pannecoucque, J., Hernández, H.P., Diaz, M., Espinoza, R., De Vos, S., Beneden, S.V., Herrera, L. and Hofte, M. (2010) Rhizoctonia spp. Causing Root and Hypocotyl Rot in Phaseolus vulgaris in Cuba. Journal of Phytopathology, 158, 236-243.
[7] Valenciano, J.B., Casquero, P.A., Boto, J.A. and Marcelo, V. (2006) Short Communications. Evaluation of the Occurrence of Root Rots on Bean Plants (Phaseolus vulgaris) Using Different Sowing Methods and with Different Techniques of Pesticide Application. New Zealand Journal of Crop and Horticultural Science, 34, 291-298.
[8] Godoy-Lutz, G., Kuninaga, S., Steadman, R. and Powers, K. (2008) Phylogenetic Analysis of Rhizoctonia solani Subgroups Associated with Web Blight Symptoms on Common Bean Based on ITS-5.8S rDNA. Journal of General Plant Pathology, 74, 32-40.
[9] Brooks, S. (2007) Sensitivity to a Phytotoxin from Rhizoctonia solani Correlates with Sheath Blight Susceptibility in rice. Phytopathology, 97, 1207-1212.
[10] Beaver, J.S., Godoy, G., Rosas, J.C. and Steadman, J. (2002) Estrategias para seleccionar frijol común con mayor resistencia a mustia hilachosa. Agronomía Mesoamericana, 13, 67-72.
[11] Akgari, A.B., Motallebi, M. and Zamani, M.R. (2012) Bean Polygalactuonase-Inhibiting Protein Expressed in Transgenic Brassica napus Inhibits Polygalacturonase from Its Fungus Pathogen Rhizoctonia solani. Plant Protection Science, 48, 1-9.
[12] Kataria, H.R. and Gisi, U. (1996) Chemical Control of Rhizoctonia Species. In: Sneh, B., Jabaji-Hare, S., Neate, S.M. and Dijst, G., Eds., Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control, Kluwer Academic, Dordrecht, 537-547.
[13] Jain, M.S. (2001) Tissue Culture-Derived Variation in Crop Improvement. Euphytica, 118, 153-166.
[14] Ahloowalia, B.S., Maluszynski, M. and Nichterlein, K. (2004) Global Impact of Mutation-Derived Varieties. Euphytica, 135, 187-204.
[15] Liu, S., Wang, H., Zhang, J., Fitt, B.D.L., Xu, Z., Evans, N., Liu, Y., Yang, W. and Guo, X. (2005) In Vitro Mutation and Selection of Doubled-Haploid Brassica napus Lines with Improved Resistance to Sclerotinia sclerotiorum. Plant Cell Reports, 24, 133-144.
[16] Predieri, S. (2001) Mutation Induction and Tissue Culture in Improving Fruits. Plant Cell, Tissue and Organ Culture, 64, 185-210.
[17] Arellano, J., Fuentes, S.I., Castillo-España, P. and Hernández, G. (2009) Regeneration of Different Cultivars of Common Bean (Phaseolus vulgaris L.) via Indirect Organogenesis. Plant Cell, Tissue and Organ Culture, 96, 11-18.
[18] Gatica, A., Muñoz, J., Fonseca, P. and Valdez, M. (2010) In Vitro Plant Regeneration System for Common Bean (Phaseolus vulgaris): Effect of N6-Benzylaminopurine and Adenine Sulphate. Electronic Journal of Biotechnology, 13, 1-8.
[19] Quintero-Jiménez, A., Espinosa-Huerta, E., Acosta-Gallegos, J.A., Guzmán-Maldonado, H.S. and Mora-Avilés, M.A. (2010) Enhanced Shoot Organogenesis and Regeneration in the Common Bean (Phaseolus vulgaris L.). Plant Cell, Tissue and Organ Culture, 102, 381-386.
[20] Lebeda, A. and Svábová, L. (2010) In Vitro Screening Methods for Assessing Plant Disease Resistance. In: IAEA, Ed., Mass Screening Techniques for Selecting Crops Resistant to Diseases, Chap. 2, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, 5-46.
[21] Svábová, L. and Lebeda, A. (2005) In Vitro Selection for Improved Plant Resistance to Toxin-Producing Pathogens. Journal of Phytopathology, 153, 52-64.
[22] Svábová, L., Lebeda, A., Kitner, M., Sedlárová, M., Petrivalsky, M., Dostálová, R., Ondrej, M., Horácek, J., Smykalová, I. and Griga, M. (2011) Comparison of the Effects of Fusarium solani Filtrates in Vitro and in Vivo on the Morphological Characteristics and Peroxidase Activity in Pea Cultivars with Different Susceptibility. Journal of Plant Pathology, 93, 19-30.
[23] Kantoglu, Y., Secer, E., Erzurum, K., Tutluer, I., Kunter, B., Peskircioglu, H. and Sagel, Z. (2010) Improving Tolerance to Fusarium oxysporum f. sp. melonis in Melon Using Tissue Culture and Mutation Techniques. In: IAEA, Ed., Mass Screening Techniques for Selecting Crops Resistant to Diseases, Chap. 14, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, 145-154.
[24] Predieri, S. and Virgilio, D.N. (2007) In Vitro Mutagenesis and Mutant Multiplication. In: Jain, S.M. and Häggman, H., Eds., Protocols for Micropropagation of Woody Trees and Fruits, Chap. 30, Springer, Dordrecht, 323-333.
[25] Rakszegi, M., Kisgyorgy, B.N., Tearall, K., Shewry, P.R., Láng, L., Phillips, A. and Bedó, Z. (2010) Diversity of Agronomic and Morphological Traits in an Mutant Population of Bread Wheat Studied in the Healthgrain Program. Euphytica, 174, 409-421.
[26] Suzuki, M. and Saito, A. (2010) Mass-Screening of Mutants Resistant to Alternaria Blotch from in Vitro-Cultured Apple Shoots Irradiated with X-Rays. In: IAEA, Ed., Mass Screening Techniques for Selecting Crops Resistant to Diseases, Chap. 9, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, 145-168.
[27] Mudibu, J., Nkongolo, K.K.C., Kalonji-Mbuyi, A. and Kizungu, R.V. (2012) Effect of Gamma Irradiation on Morpho-Agronomic Characteristics of Soybeans (Glycine max L.). American Journal of Plant Sciences, 3, 331-337.
[28] Ahloowalia, B.S. and Maluszynski, M. (2001) Induced Mutations—A New Paradigm in Plant Breeding. Euphytica, 118, 167-173.
[29] Svetleva, D., Velcheva, M. and Bhowmik, G. (2003) Biotechnology as a Useful Tool in Common Bean (Phaseolus vulgaris L.) Improvement. A Review. Euphytica, 131, 189-200.
[30] Szarejko, I. and Forster, B.P. (2007) Doubled Haploidy and Induced Mutation. Euphytica, 158, 359-370.
[31] Murashige, T. and Skoog, F. (1962) A Revised Medium for Rapid Growth and Bioassay with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 473-497.
[32] Keijer, J. (1996) The Initial Steps of the Infection Process in Rhizoctonia solani. In: Sneh, B., Jabajii-Hare, S., Neate, S. and Dijist, G., Eds., Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Oahology and Disease Control, Kluwer Academia Publishers, Dordrecht, 149-162.
[33] Mora-Umaña, F., Barboza, N., Alvarado, R., Vásquez, M., Godoy-Lutz, G., Stedman, J.R. and Ramírez, P. (2013) Virulence and Molecular Characterization of Costa Rican Isolates of Rhizoctonia solani from Common Bean. Tropical Plant Pathology, 38, 461-471.
[34] Faraway, J. (2006) Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. Chapman & Hall/CRC, Boca Raton.
[35] Lu, G., Zhang, X.Y., Zou, Y.J., Zou, Q.C., Xiang, X. and Cao, J.S. (2007) Effect of Radiation on Regeneration of Chinese narcissus and Analysis of Genetic Variation with AFLP and RAPD Markers. Plant Cell, Tissue and Organ Culture, 88, 319-327.
[36] Bajaj, Y.P.S. (1970) Effects of Gamma-Irradiation on Growth, RNA, Protein and Nitrogen Contents of Bean Callus Cultures. Annals of Botany, 34, 1089-1096.
[37] Bajaj, Y.P.S. and Saettler, A.W. (1970) Effect of Halo Toxin-Containing Filtrates of Pseudomonas phaseolicola on the Growth of Bean Callus Tissue. Phytopathology, 60, 1065-1067.
[38] Fu, H.-W., Li, Y.-F. and Shu, Q.-Y. (2008) A Revisit of Mutation Induction by Gamma Rays in Rice (Oryza sativa L.): Implications of Microsatellite Markers for Quality Control. Molecular Breeding, 22, 281-288.
[39] Chaves, M. and Nakahodo, N. (1984) Mejoramiento de frijol (Phaseolus vulgaris L.) Mediante Mutaciones. In: IAEA, Ed., Induced Mutations for Crop Improvement in Latin America, FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, 198-205.
[40] Al-Safadi, B., Ayyoubi, Z. and Jawdat, D. (2000) The Effect of Gamma Irradiation on Potato Microtuber Production in Vitro. Plant Cell, Tissue and Organ Culture, 61, 183-187.

[41] Predieri, S. and Zimmerman, R.H. (2001) Pear Mutagenesis: In Vitro Treatment with Gamma-Rays and Field Selection for Productivity and Fruit Traits. Euphytica, 117, 217-227.
[42] Muthusamy, A., Vasanth, K., Sivasankari, D., Chandrasekar, B.R. and Jayabalan, N. (2007) Effects of Mutagens on Somatic Embryogenesis and Plant Regeneration in Groundnut. Biologia Plantarum, 51, 430-435.
[43] Matsumoto, K., Barbosa, M.L, Souza, L.A.C. and Teixeira, J.B. (2012) In Vitro Selection for Resistance to Fusarium Wilt in Banana. In: IAEA, Ed., Mass Screening Techniques for Selecting Crops Resistant to Diseases, Chap. 6, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, 115-128.
[44] Morpurgo, R., Lopato, S., Afza, R. and Novák, F.J. (2010) Selection Parameters for Resistance to Fusarium oxysporum f. sp. cubense Race 1 and Race 4 on Diploid Banana (Musa acuminata). In: IAEA, Ed., Mass Screening Techniques for Selecting Crops Resistant to Diseases, Chap. 7, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, 129-138.
[45] Bajaj, Y.P.S., Saettler, A.W. and Adams, M.W. (1970) Gamma Irradiation Studies on Seeds, Seedlings and Callus Tissue Cultures of Phaseolus vulgaris L. Radiation Botany, 10, 119-124.
[46] Fernández, M.T., Fernández, M., Centeno, M.L., Canal, J. and Rodríguez, R. (2000) Reaction of Common Bean Callus to Culture Filtrate of Colletotrichum lindemuthianum: Differences in the Composition and Toxic Activity of Fungus Culture Filtrates. Plant Cell, Tissue and Organ Culture, 61, 41-49.
[47] González, A.I., Polanco, C. and Ruiz, M.L. (2006) In Vitro Culture Response of Common Bean Explants to Filtrate from Pseudomonas syringae pv. phaseolicola and Correlation with Disease Resistance. In Vitro Cellular & Developmental Biology-Plant, 42, 160-164.
[48] Aoki, H., Takesshi, S. and Teiichi, T. (1963) Phytotoxic Metabolites of Rhizoctonia solani. Nature, 200, 575.
[49] Gayatri, M.C., Roopa, D.V. and Kavyashree, R. (2005) Selection of Tumeric Callus for Tolerant to Culture Filtrate of Pythium graminicolum and Regeneration of Plants. Plant Cell, Tissue and Organ Culture, 83, 33-40.
[50] Rezaee, M., Almassi, M., Majdabadi, A., Minaei, S. and Khodadadi, M.J. (2011) Potato Sprout Inhibition and Tuber Quality after Post Harvest Treatment with Gamma Irradiation on Different Dates. Journal of Agricultural Science and Technology, 13, 829-842.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.