Continuous Wave Diode Laser Surface Texturing of Austenitic and Pearlitic Steels

Abstract

Microstructuring of steel resulting in directional solidification and texturing, previously observed in various metallic materials during pulsed laser processing, melt-spinning, high-gradient liquid metal melting, zone melting etc., is reported for the first time in continuous wave diode laser processing of steels. Influence of laser interaction time on surface morphology/topology of austenitic manganese and pearlitic steels is investigated utilizing a wide rectangular multi-mode diode laser beam. X-ray diffraction analysis of the laser treated austenitic steel surface showed strong texturing influence, with preferred crystallographic orientation of γ-Fe crystals in the (200) plane, which increased with interaction time. In case of pearlitic steel, no such texturing influence could be observed. The free surface topologies were also observed to be different in each case, with well-aligned domes of γ-Fe observed in laser treated austenitic steel as compared to randomly oriented fine domes of metal oxides in pearlitic one. In situ surface temperature measurement during laser irradiation indicated higher temperature on pearlitic steel than in austenitic manganese steel owing to its lower effective thermal conductivity associated with higher oxide film formation.

Share and Cite:

Shariff, S. , Koppoju, S. , Pal, T. , Gadhe, P. and Joshi, S. (2015) Continuous Wave Diode Laser Surface Texturing of Austenitic and Pearlitic Steels. Materials Sciences and Applications, 6, 889-906. doi: 10.4236/msa.2015.610091.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Cui, C.Y., Hu, J.D., Liu, Y.H., Gao, K. and Guo, Z.X. (2008) Morphological and Structural Characteristics of Different Oxides Formed on the Stainless Steel by Nd:YAG Pulsed Laser Irradiation. Applied Surface Science, 254, 6537-6542.
http://dx.doi.org/10.1016/j.apsusc.2008.04.020
[2] Hua, M., Shao, T.M., Hong, Y.T. and Man, E.C.H. (2004) Influence of Pulse Duration on the Surface Morphology of ASSAB DF-2 (AISI-01) Cold Work Steel Treated by YAG Laser. Surface and Coatings Technology, 185, 127-136.
http://dx.doi.org/10.1016/j.surfcoat.2004.01.007
[3] Brown, S.W., Fisk, A.E. and Reutzel, E.W. (2012) Fs Laser Surface Processing of Platinum. Proceedings of 31st International Congress on Applications of Lasers and Electro-Optics (ICALEO), Anaheim, 23-27 September 2012, 710-719.
[4] Lickschat, P., Schille, J., Muller, M., Weissmantel, S. and Reisse, G. (2012) Comparative Study on Microstructuring of Steel Using Pico- and Femtosecond Laser Pulses. Proceedings of 31st International Congress on Applications of Lasers & Electro-Optics (ICALEO), Anaheim, 23-27 September 2012, 1261-1268.
[5] Jiang, Y.J., Zhao, Y. and Xie, S. (2012) Improving the Wettability on ZnO and ZrO2 Single Crystal Surface by Laser Irradiation. Proceedings of 31st International Congress on Applications of Lasers and Electro-Optics (ICALEO), Anaheim, 23-27 September 2012, 943-946.
[6] Chikarakara, E., Naher, S. and Brabazon, D. (2011) Process Mapping of Laser Surface Modification on AISI 316L Stainless Steel for Biomedical Applications. Applied Physics A, 101, 367-371.
http://dx.doi.org/10.1007/s00339-010-5843-5
[7] Semak, V.V., Damkroger, B. and Kempka, S. (1999) Temporal Evolution of the Temperature Field in the Beam Interaction Zone during Laser Material Processing. Journal of Physics D: Applied Physics, 32, 1819-1825.
http://dx.doi.org/10.1088/0022-3727/32/15/309
[8] Riveiro, A., Soto, R., Comesana, R., Boutinguiza, M., del Val, J., Quintero, F., Lusquinos, F. and Pou, J. (2012) Laser Surface Texturing of Bioactive Materials. Proceedings of 31st International Congress on Applications of Lasers and Electro-Optics (ICALEO), Anaheim, 23-27 September 2012, 889-895.
[9] Kac, S. and Kusinski, J. (2004) SEM Structure and Properties of ASP2060 Steel after Laser Melting. Surface and Coatings Technology, 180-181, 611-615.
http://dx.doi.org/10.1016/j.surfcoat.2003.10.104
[10] Schille, J., Schneider, L., Hartwig, L., Loeschner, U., Ebert, R., Scully, P., Goddard, N. and Exner, H. (2012) Characterization of Interaction Phenomena in High Repetition Rate Femtosecond Laser Ablation of Metals. Proceedings of 31st International Congress on Applications of Lasers and Electro-Optics (ICALEO), Anaheim, 23-27 September 2012, 949-958.
[11] Cui, C.Y., Hu, J.D., Liu, Y.H., Gao, K. and Guo, Z.X. (2008) Formation of Nano-Crystalline and Amorphous Phases on the on the Surface of Stainless Steel by Nd:YAG Pulsed Laser Irradiation. Applied Surface Science, 254, 6779-6782.
http://dx.doi.org/10.1016/j.apsusc.2008.04.069
[12] Paetzel, R. (2002) Comparison Excimer Laser—Solid State Laser. Lambda Physik AG Report.
[13] Boettinger, W.J., Coriell, S.R., Greer, A.L., Karma, A., Kurz, W., Rappaz, M. and Trivedi, R. (2000) Solidification Microstructure: Recent Developments, Future Directions. Acta Materalia, 48, 43-70.
http://dx.doi.org/10.1016/S1359-6454(99)00287-6
[14] Liu, L., Huang, T.W., Qu, M., Liu, G., Zhang, J. and Fu, H.Z. (2010) High Thermal Gradient Directional Solidification and Its Application in the Processing of Nickel-Based Super Alloys. Journal of Materials Processing Technology, 210, 159-165.
http://dx.doi.org/10.1016/j.jmatprotec.2009.07.022
[15] Vilar, R., Almeida, A. and Costa, E. (2012) Structure of Ni-Alloys Deposited by Laser Powder Deposition on Single Crystal Superalloy Substrates. Proceedings of 31st International Congress on Applications of Lasers and Electro-Optics (ICALEO), Anaheim, 23-27 September 2012, 197-204.
[16] Ramirez-Rico, J., de Aellano-Lopez, A.R., Martinez-Fernandez, J., Pena, J.J. and Larrea, A. (2008) Crystallographic Texture in Al2O3-ZrO2(Y2O3) Directionally Solidified Eutectics. Journal of the European Ceramic Society, 28, 2681-2686.
http://dx.doi.org/10.1016/j.jeurceramsoc.2008.04.015
[17] Vilar, R., Conde, O. and Franco, S. (1999) Crystallographic Structure of Al3Nb in Laser-Processed Al-Nb Alloys. Intermetallics, 7, 1227-1233.
http://dx.doi.org/10.1016/S0966-9795(99)00025-4
[18] Berjeza, N.A., Velikevitch, S.P., Mazhukin, V.I., Smurov, I. and Flamant, G. (1995) Influence of Temperature Gradient to Solidification Velocity Ratio on the Structure Transformation in Pulsed- and CW-Laser Surface Treatment. Applied Surface Science, 86, 303-309.
http://dx.doi.org/10.1016/0169-4332(94)00446-3
[19] Liu, Y.C., Guo, Z.Q., Wang, T., Xu, D.S., Song, G.S., Yang, G.C. and Zhou, Y.H. (2001) Directional Growth of Metastable Phase γ in Laser-Remelted Ti-Al. Journal of Materials Processing Technology, 108, 394-397.
http://dx.doi.org/10.1016/S0924-0136(00)00851-7
[20] Bruzzone, A.A.G., Costa, H.L., Lonardo, P.M. and Lucca, D.A. (2008) Advances in Engineered Surfaces for Functional Performances. CIRP Annals—Manufacturing Technology, 57, 750-769.
http://dx.doi.org/10.1016/j.cirp.2008.09.003
[21] Lu, Y.C., Jin, C., Lin, T.L., Chen, L.Y. and Su, B.R. (1988) Microstructure and Properties of Epitaxial Layers by Laser Glazing. Materials Letters, 6, 229-232.
http://dx.doi.org/10.1016/0167-577X(88)90027-4
[22] Tjong, S.C. and Tsang, H.C. (1993) Laser Surface Melting of an Austenitic Fe-26Mn-7Al-0.9C Alloy. Surface and Coatings Technology, 57, 139-144.
http://dx.doi.org/10.1016/0257-8972(93)90030-R
[23] Chen, S.R., Davies, H.A. and Rainworth, W.M. (1999) Austenite Phase Formation in Rapidly Solidified Fe-Cr-Mn-C Steels. Acta Materalia, 47, 4555-4569.
http://dx.doi.org/10.1016/S1359-6454(99)00334-1
[24] Seblin, B., Jahazeeah, Y., Sujeebun, S., Manohar, K. and Wong, B. (2004) Material Science MECH2104 Report: Steel. 1-21.
[25] Marshall, A.J. (2011) Technical Data Sheet: Hadfield Steel.
[26] Senthil Selvan, J., Subramanian, K. and Nath, A.K. (1999) Effects of Laser Surface Hardening on En18 (AISI 5135) Steel. Journal of Materials Processing Technology, 91, 29-36.
http://dx.doi.org/10.1016/S0924-0136(98)00430-0
[27] ASM International (1990) ASM Handbook, Vol. 1: Properties and Selection Iron Steels and High Performance Alloys. ASM International, Geauga County.
[28] Shariff, S.M., Pal, T.K., Padmanabham, G. and Joshi, S.V. (2011) Comparative Study on Dry Sliding Wear Behavior of Various Railroad Steels. Journal of Tribology (Transactions of ASME), 133, Article ID: 021602.
http://dx.doi.org/10.1115/1.4003485
[29] Peters, N.W. (2005) Report: The Performance of Hadfield’s Manganese Steel as It Relates to Manufacture.
[30] Srivastava, A.K. and Das, K. (2008) Microstructural Characterization of Hadfield Austenitic Manganese Steel. Journal of Materials Science, 43, 5654-5658.
http://dx.doi.org/10.1007/s10853-008-2759-y
[31] US Department of Transportation (2002) Report-DOT/FRA/ORD-01/15: Steel Alloys with Lower Bainite Microstructures for Use in Railroad Cars and Track.
[32] Jost, N. and Schmidt, I. (1986) Friction-Induced Martensitic Transformation in Austenitic Manganese Steels. Wear, 111, 377-389.
http://dx.doi.org/10.1016/0043-1648(86)90134-1
[33] Totten, G.E. (2007) Steel Heat Treatment Handbook. 2nd Edition, Steel Heat Treatment—Metallurgy and Technologies, 561-706.
[34] Ham, Y.-S., Kim, J.-T., Kwak, S.-Y., Choi, J.-K. and Yoon, W.-Y. (2010) Critical Cooling Rate on Carbide Precipitation during Quenching of Austenitic Manganese Steel. China Foundry, 7, 178-182.
[35] Norberg, L. (2010) Fatigue Properties of Austenitic Mn-Steel in Explosion Depth Hardened Condition. Master’s Thesis, Chalmers University of Technology, Gothenburg.
[36] Owen, W.S. and Grujicic, M. (1999) Stain Aging of Austenitic Hadfield Manganese Steel. Acta Materalia, 47, 111-126.
http://dx.doi.org/10.1016/S1359-6454(98)00347-4
[37] Rittel, D. and Roman, I. (1989) Tensile Deformation of Coarse-Grained Cast Austenitic Manganese Steels. Materials Science and Engineering: A, 110, 77-87.
http://dx.doi.org/10.1016/0921-5093(89)90159-7
[38] Smith, R.W. (2003) WB F Mackay, Austenitic Manganese Steels—Developments for Heavy Haul Rail Transportation. Canadian Metallurgical Quarterly, 42, 333-342.
http://dx.doi.org/10.1179/cmq.2003.42.3.333
[39] Subhi, A.D. and Abdulrazaq, O.A. (2007) Phase Transformation of Hadfield Manganese Steels. Engineering and Technology, 25, 808-814.
[40] Shariff, S.M., Pal, T.K., Padmanabham, G. and Joshi, S.V. (2013) Influence of Chemical Composition and Prior Microstructure on Diode Laser Hardening of Railroad Steels. Surface and Coatings Technology, 228, 14-26.
http://dx.doi.org/10.1016/j.surfcoat.2013.03.046
[41] Shariff, S.M., Pal, T.K., Padmanabham, G. and Joshi, S.V. (2010) Sliding Wear Behaviour of Laser Surface Modified Pearlitic Rail Steel. Surface Engineering, 26, 199-208.
http://dx.doi.org/10.1179/174329409X455458
[42] Clayton, P. (1980) The Relations between Wear Behavior and Basic Material Properties for Pearlitic Steels. Wear, 60, 75-93.
http://dx.doi.org/10.1016/0043-1648(80)90250-1
[43] Chen, H.-T., Lin, J.-H. and Xu, X.-J. (2013) Analytical Estimates of Surface Conditions in Laser Surface Heating Process with Experimental Data. International Journal of Heat and Mass Transfer, 67, 936-943.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.08.093
[44] Iordanova, I. and Antonov, V. (2008) Surface Oxidation of Low Carbon Steel during Laser Treatment: Its Dependence on Initial Microstructure and Influence on the Laser Energy Absorption. Thin Solid Films, 516, 7475-7481.
http://dx.doi.org/10.1016/j.tsf.2008.03.031
[45] Pantsar, H. and Kujanpaa, V. (2006) Effect of Oxide Layer Growth on Diode Laser Beam Transformation Hardening of Steels. Surface and Coatings Technology, 200, 2627-2633.
http://dx.doi.org/10.1016/j.surfcoat.2004.09.001
[46] Hua, M., SeDao, Shao, T.M. and Tam, H.Y. (2007) Surface Transformation of DF-2 Steel after Continuous Mode Laser Irradiation. Journal of Materials Processing Technology, 192-193, 89-96.
http://dx.doi.org/10.1016/j.jmatprotec.2007.04.037
[47] Taha, M.A., Yousef, A.F., Gany, K.A. and Sabour, H.A. (2012) On Selective Laser Melting of Ultra High Carbon Steel: Effect of Scan Speed and Post Heat Treatment. Materialwissenschaft und Werkstofftechnik, 43, 913-923.
http://dx.doi.org/10.1002/mawe.201200030
[48] Pelletier, J.M., Oucherif, F., Sallamund, P. and Vannes, A.B. (1995) Hadfield Steel Coatings on Low Carbon Steel by Laser Cladding. Materials Science and Engineering A, 202, 142-147.
http://dx.doi.org/10.1016/0921-5093(95)09792-9
[49] Yilbas, B.S., Sami, M. and Shuja, S.Z. (1998) Laser-Induced Thermal Stresses on Steel Surface. Optics and Lasers in Engineering, 30, 25-37.
http://dx.doi.org/10.1016/S0143-8166(98)00008-6
[50] Mendez, J., Ghoreshy, M., Mackay, W.B.F., Smith, T.J.N. and Smith, R.W. (2004) Weldability of Austenitic Manganese Steel. Journal of Materials Processing Technology, 153-154, 596-602.
http://dx.doi.org/10.1016/j.jmatprotec.2004.04.033
[51] Cui, C.Y., Hu, J.D., Liu, Y.H., Gao, K. and Guo, Z.X. (2008) Microstructure Evolution on the Surface of Stainless Steel by Nd:YAG Pulsed Laser Irradiation. Applied Surface Science, 254, 3442-3448.
http://dx.doi.org/10.1016/j.apsusc.2007.11.035
[52] Faucon, M., Desrus, H., Lopez, J. and Kling, R. (2012) Comparison Study of Sub Microstructure Generation on Metals between Femtosecond Ti:Sa Laser and High Repetition Yb Doped Fiber Laser. Proceedings of 31st International Congress on Applications of Lasers and Electro-Optics (ICALEO), Anaheim, 23-27 September 2012, 877-881.
[53] Kwok, C.T., Lo, K.H., Chan, W.K., Cheng, F.T. and Man, H.C. (2011) Effect of Laser Surface Melting on Intergrannular Corrosion Behaviour of Aged Austenitic and Duplex Stainless Steels. Corrosion Science, 53, 1581-1591.
http://dx.doi.org/10.1016/j.corsci.2011.01.048
[54] Kwok, C.T., Man, H.C. and Cheng, F.T. (1998) Cavitation Erosion and Pitting Corrosion of Laser Surface Melted Stainless Steels. Surface and Coatings Technology, 99, 295-304.
http://dx.doi.org/10.1016/S0257-8972(97)00624-5

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.