Variations in the Patterns of Precipitation in the Watershed of the Ambato River Associated with the Eruptive Process of the Tungurahua Volcano in Ecuador

Abstract Full-Text HTML XML Download Download as PDF (Size:14084KB) PP. 121-139
DOI: 10.4236/ojmh.2015.54011    3,613 Downloads   4,210 Views   Citations

ABSTRACT

The Tungurahua, located in the Cordillera de los Andes, is the volcano with the most eruptive activity in Ecuador nowadays. 1993 records the eruptive initial process and in August of 1999, after almost 80 years of rest, the volcano begins an explosive eruptive period. This research examines the effects of the eruptive process of the volcano in the patterns of change in precipitation in the short term in a hydrographic watershed. Their results are intended to contribute to the studies carried out to understand the weather and the factors influencing its variability at local and global level. It aims also to contribute with technical data in the debate about experimenting with artificial volcanoes to weather modification. The analysis demonstrates a process of redistribution of rainfall, with significant increases in rainfall from 42.25% on December, and significant decreases of 40.03% on September, during the presence of the eruptive process.

Cite this paper

García, I. and Solera, A. (2015) Variations in the Patterns of Precipitation in the Watershed of the Ambato River Associated with the Eruptive Process of the Tungurahua Volcano in Ecuador. Open Journal of Modern Hydrology, 5, 121-139. doi: 10.4236/ojmh.2015.54011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Fontaine, G., Narváez, I. and Cisneros, P. (2008) Informe sobre el estado del medio ambiente. Flacso, GeoEcuador, Quito, 110-126.
[2] Robock, A. (2000) Volcanic Eruptions and Climate. Reviews of Geophysics, 38, 191-219.
http://dx.doi.org/10.1029/1998RG000054
[3] Dricoll, S., Bozzo, A., Gray, L., Robock, A. and Stenchikov, G. (2012) Coupled Model Intercomparison Project 5 (CMIP5) Simulations of Climate Following Volcanic Eruptions. Submited J. Geophys Res.
[4] Halmer, M. and Schmincker, H. (2003) The Impact of Moderate-Scale Explosive Eruptions on Stratospheric Gas Injections. Bulletin of Volcanology, 65, 433-440.
http://dx.doi.org/10.1007/s00445-002-0270-x
[5] Consejo Provincial de Tungurahua (2007) Manejo Ecológicamente Compatible de las Cuencas del Tungurahua Ambato 115 p.
[6] Samaniego, P. (2005) Los peligros volcánicos asociados con el Tungurahua. Quito. Corporación Editora Nacional.
[7] Bustillos, J. (2011) Volcán Tungurahua: Tamaño de las Erupciones Explosivas. Memorias de las 7mas Jornadas en Ciencia de la Tierra, I Encuentro sobre Riesgos y Desastres. EPN. Instituto Geofísico, Quito.
[8] Trocoso, L., Pennec, J., Java, D. and Vallee, A. (2006) Depósito de caída de ceniza producidos durante las erupciones del volcán Tungurahua 14 de julio y 16 de de agosto de 2006. Quito, InstitutoGeofísico, EPN, 3-5.
[9] Pyle, D. (2000) Size of Volcanic Eruption. Encyclopedia of Volcanoes. Academy Press, San Diego, Part II, 263-269.
[10] Hamed, K. (2008) Trend Detection in Hydrologic Data: The Mann-Kendall Trend Test under the Scaling Hypothesis. Journal of Hydrology, 349, 350-363.
http://dx.doi.org/10.1016/j.jhydrol.2007.11.009
[11] Ikewelugo, A. (2012) Modified Wilcoxon Signed-Rank Test. Journal of Statistics, 2, 172-176.
[12] De Lima, M., Carvalho, P. and Coelho, S. (2010) Trends in Precipitation: Analysis of Long Annual and Monthly Time Series from Mainland Portugal. Advances in Geosciences, 25, 155-160.
http://dx.doi.org/10.5194/adgeo-25-155-2010

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.