Neurobiological Bases of Learning and Their Role for the Paradigm Shift in Education


In recent years, neurobiology has produced the cellular foundations that account for the phenomena of memory and learning in mammals. Nevertheless, this information has not always been applied to educational processes. Our paper reviews the information regarding the cellular processes underlying learning and how these may impact or explain didactic processes, forcing us to rethink current paradigms.

Share and Cite:

Chavez-Mancilla, V. and Parodi, J. (2015) Neurobiological Bases of Learning and Their Role for the Paradigm Shift in Education. Psychology, 6, 1741-1749. doi: 10.4236/psych.2015.613170.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Abraham, W. C. (1999). Metaplasticity: Key Element in Memory and Learning? News in Physiological Sciences, 14, 85.
[2] Abraham, W. C., & Bear, M. F. (1996). Metaplasticity: The Plasticity of Synaptic Plasticity. Trends in Neurosciences, 19, 126-130.
[3] Altman, J. (1969). Autoradiographic and Histological Studies of Postnatal Neurogenesis. Iv. Cell Proliferation and Migration in the Anterior Forebrain, with Special Reference to Persisting Neurogenesis in the Olfactory Bulb. The Journal of Comparative Neurology, 137, 433-457.
[4] Barnes, C. A. (1994). Normal Aging: Regionally Specific Changes in Hippocampal Synaptic Transmission. Trends in Neurosciences, 17, 13-18.
[5] Bergado, J. A., & Almaguer, W. (2002). Aging and Synaptic Plasticity: A Review. Neural Plasticity, 9, 217-232.
[6] Bliss, T. V., Collingridge, G. L., & Morris, R. G. (2014). Synaptic Plasticity in Health and Disease: Introduction and Overview. Philosophical Transactions of the Royal Society B, 369, Article ID: 20130129.
[7] Boric, K., Munoz, P., Gallagher, M., & Kirkwood, A. (2008). Potential Adaptive Function for Altered Long-Term Potentiation Mechanisms in Aging Hippocampus. Journal of Neuroscience, 28, 8034-8039.
[8] Bortolotto, Z. A., Lauri, S., Isaac, J. T., & Collingridge, G. L. (2003). Kainate Receptors and the Induction of Mossy Fibre Long-Term Potentiation. P Philosophical Transactions of the Royal Society B, 358, 657-666.
[9] Burns, M. E., & Wensel, T. G. (2003). From Molecules to Behavior: New Clues for Rgs Function in the Striatum. Neuron, 38, 853-856.
[10] Carrera, R. M. H. (2014). Training in Companies, Permanent Training and Adult Learning: An Epistemological Approach. Procedia—Social and Behavioral Sciences, 139, 434-440.
[11] Cho, H., Harrison, K., & Kehrl, J. H. (2004). Regulators of G Protein Signaling: Potential Drug Targets for Controlling Cardiovascular and Immune Function. Current Drug Targets—Immune, Endocrine & Metabolic Disorders, 4, 107-118.
[12] Citri, A., & Malenka, R. C. (2008). Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology, 33, 18-41.
[13] Collingridge, G. L., Peineau, S., Howland, J. G., & Wang, Y. T. (2010). Long-Term Depression in the CNS. Nature Reviews Neuroscience, 11, 459-473.
[14] Collins, J. W. (2007). The Neuroscience of Learning. Journal of Neuroscience Nursing, 39, 305-310.
[15] Cummings, J. A., Mulkey, R. M., Nicoll, R. A., & Malenka, R. C. (1996). Ca2+ Signaling Requirements for Long-Term Depression in the Hippocampus. Neuron, 16, 825-833.
[16] Dan, Y., & Poo, M. M. (2006). Spike Timing-Dependent Plasticity: From Synapse to Perception. Physiological Reviews, 86, 1033-1048.
[17] Edwards, C. P. (2006). Montessori Education and Its Scientific Basis. Journal of Applied Developmental Psychology, 27, 183-187.
[18] Elhamdani, A., Bossu, J. L., & Feltz, A. (1994). Evolution of the Ca2+ Current during Dialysis of Isolated Bovine Chromaffin Cells: Effect of Internal Calcium. Cell Calcium, 16, 357-366.
[19] Elhamdani, A., Palfrey, H. C., & Artalejo, C. R. (2001). Quantal Size Is Dependent on Stimulation Frequency and Calcium Entry in Calf Chromaffin Cells. Neuron, 31, 819-830.
[20] El-Husseini, A. E., Schnell, E., Chetkovich, D. M., Nicoll, R. A., & Bredt, D. S. (2000). Psd-95 Involvement in Maturation of Excitatory Synapses. Science, 290, 1364-1368.
[21] Garthe, A., Behr, J., & Kempermann, G. (2009). Adult-Generated Hippocampal Neurons Allow the Flexible Use of Spatially Precise Learning Strategies. PLoS ONE, 4, e5464.
[22] Hess, H. A., Roper, J. C., Grill, S. W., & Koelle, M. R. (2004). Rgs-7 Completes a Receptor-Independent Heterotrimeric G Protein Cycle to Asymmetrically Regulate Mitotic Spindle Positioning in C. elegans. Cell, 119, 209-218.
[23] Hubackova, S., & Semradova, I. (2014). Research Study on Motivation in Adult Education. Procedia—Social and Behavioral Sciences, 159, 396-400.
[24] Hurwitz, S. (1996). Homeostatic Control of Plasma Calcium Concentration. Critical Reviews in Biochemistry and Molecular Biology, 31, 41-100.
[25] Jean-Baptiste, G., Yang, Z., & Greenwood, M. T. (2006). Regulatory Mechanisms Involved in Modulating RGS Function. Cellular and Molecular Life Sciences, 63, 1969-1985.
[26] Jo, J., Son, G. H., Winters, B. L., Kim, M. J., Whitcomb, D. J., Dickinson, B. A. et al. (2010). Muscarinic Receptors Induce LTD of NMDAR EPSCs via a Mechanism Involving Hippocalcin, AP2 and PSD-95. Nature Neuroscience, 13, 1216-1224.
[27] Kandel, E. R. (1978). A Cell-Biological Approach to Learning. Bethesda, MD: Society for Neuroscience.
[28] Kemp, N., McQueen, J., Faulkes, S., & Bashir, Z. I. (2000). Different Forms of LTD in the CA1 Region of the Hippocampus: Role of Age and Stimulus Protocol. European Journal of Neuroscience, 12, 360-366.
[29] Kovalchuk, Y., Hanse, E., Kafitz, K. W., & Konnerth, A. (2002). Postsynaptic Induction of BDNF-Mediated Long-Term Potentiation. Science, 295, 1729-1734.
[30] Leuner, B., & Gould, E. (2010). Structural Plasticity and Hippocampal Function. Annual Review of Psychology, 61, 111-140.
[31] Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An Embarrassment of Riches. Neuron, 44, 5-21.
[32] Martin, S. J., Grimwood, P. D., & Morris, R. G. (2000). Synaptic Plasticity and Memory: An Evaluation of the Hypothesis. Annual Review of Neuroscience, 23, 649-711.
[33] Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place Navigation Impaired in Rats with Hippocampal Lesions. Nature, 297, 681-683.
[34] Neves, G., Cooke, S. F., & Bliss, T. V. (2008). Synaptic Plasticity, Memory and the Hippocampus: A Neural Network Approach to Causality. Nature Reviews Neuroscience, 9, 65-75.
[35] O’Keefe, J., & Dostrovsky, J. (1971). The Hippocampus as a Spatial Map. Preliminary Evidence from Unit Activity in the Freely-Moving Rat. Brain Research, 34, 171-175.
[36] O’Keefe, J., & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford: Oxford University Press.
[37] Olate, J., & Allende, J. E. (1991). Structure and Function of G Proteins. Pharmacology & Therapeutics, 51, 403-419.
[38] Otmakhov, N., Khibnik, L., Otmakhova, N., Carpenter, S., Riahi, S., Asrican, B., & Lisman, J. (2004). Forskolin-Induced LTP in the CA1 Hippocampal Region Is NMDA Receptor Dependent. Journal of Neurophysiology, 91, 1955-1962.
[39] Paixao, S., & Klein, R. (2010). Neuron-Astrocyte Communication and Synaptic Plasticity. Current Opinion in Neurobiology, 20, 466-473.
[40] Pounds, J. G. (1984). Effect of Lead Intoxication on Calcium Homeostasis and Calcium-Mediated Cell Function: A Review. Neurotoxicology, 5, 295-331.
[41] Raymond, C. R. (2007). LTP Forms 1, 2 and 3: Different Mechanisms for the “Long” in Long-Term Potentiation. Trends in Neurosciences, 30, 167-175.
[42] Ron, D., & Jurd, R. (2005). The “Ups and Downs” of Signaling Cascades in Addiction. Science Signaling, 2005, re14.
[43] Rosenmund, C., & Stevens, C. F. (1996). Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses. Neuron, 16, 1197-1207.
[44] Saura-Llamas, J., Saturno Hernández, P. J., & Romero Sánchez, E. (2006). Modelos formativos que pueden utilizar los tutores para formar residentes. FMC—Formación Médica Continuada en Atención Primaria, 13, 435-446.
[45] Sehgal, M., Song, C., Ehlers, V. L., & Moyer Jr., J. R. (2013). Learning to Learn-Intrinsic Plasticity as a Metaplasticity Mechanism for Memory Formation. Neurobiology of Learning and Memory, 105, 186-199.
[46] Shichida, Y., & Morizumi, T. (2007). Mechanism of G-Protein Activation by Rhodopsin. Photochemistry and Photobiology, 83, 70-75.
[47] Spencer, J. P. (2008). Food for Thought: The Role of Dietary Flavonoids in Enhancing Human Memory, Learning and Neuro-Cognitive Performance. Proceedings of the Nutrition Society, 67, 238-252.
[48] Stewart, A. F. (1985). Calcium Metabolism without Anguish. Understanding the Body’s Homeostatic “Black Box”. Postgraduate Medicine, 77, 283-294.
[49] Sutherland, R. J., Kolb, B., & Whishaw, I. Q. (1982). Spatial Mapping: Definitive Disruption by Hippocampal or Medial Frontal Cortical Damage in the Rat. Neuroscience Letters, 31, 271-276.
[50] Tilakaratne, N., & Sexton, P. M. (2005). G-Protein-Coupled Receptor-Protein Interactions: Basis for New Concepts on Receptor Structure and Function. Clinical and Experimental Pharmacology and Physiology, 32, 979-987.
[51] Trifaro, J., Rose, S. D., Lejen, T., & Elzagallaai, A. (2000). Two Pathways Control Chromaffin Cell Cortical F-Actin Dynamics during Exocytosis. Biochimie, 82, 339-352.
[52] Ventura, R., & Harris, K. M. (1999). Three-Dimensional Relationships between Hippocampal Synapses and Astrocytes. Journal of Neuroscience, 19, 6897-6906.
[53] Warner, D. R., & Weinstein, L. S. (1999). A Mutation in the Heterotrimeric Stimulatory Guanine Nucleotide Binding Protein Alpha-Subunit with Impaired Receptor-Mediated Activation Because of Elevated GTPase Activity. Proceedings of the National Academy of Sciences of the United States of America, 96, 4268-4272.
[54] Wayman, G. A., Lee, Y. S., Tokumitsu, H., Silva, A. J., & Soderling, T. R. (2008). Calmodulin-Kinases: Modulators of Neuronal Development and Plasticity. Neuron, 59, 914-931.
[55] Whitlock, J. R., Heynen, A. J., Shuler, M. G., & Bear, M. F. (2006). Learning Induces Long-Term Potentiation in the Hippocampus. Science, 313, 1093-1097.
[56] Yang, S., Megill, A., Ardiles, A. O., Ransom, S., Tran, T., Koh, M. T. et al. (2013). Integrity of mGluR-LTD in the Associative/Commissural Inputs to CA3 Correlates with Successful Aging in Rats. Journal of Neuroscience, 33, 12670-12678.
[57] Yi, T. M., Kitano, H., & Simon, M. I. (2003). A Quantitative Characterization of the Yeast Heterotrimeric G Protein Cycle. Proceedings of the National Academy of Sciences of the United States of America, 100, 10764-10769.
[58] Ziemann, U., & Siebner, H. R. (2008). Modifying Motor Learning through Gating and Homeostatic Metaplasticity. Brain Stimulation, 1, 60-66.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.