Share This Article:

Unique Measure for the Time-Periodic Navier-Stokes on the Sphere Navier-Stokes on the Sphere

Abstract Full-Text HTML XML Download Download as PDF (Size:443KB) PP. 1809-1830
DOI: 10.4236/am.2015.611160    2,408 Downloads   2,756 Views   Citations
Author(s)    Leave a comment

ABSTRACT

This paper proves the existence and uniqueness of a time-invariant measure for the 2D Navier-Stokes equations on the sphere under a random kick-force and a time-periodic deterministic force. Several examples of deterministic force satisfying the necessary conditions for a unique invariant measure to exist are given. The support of the measure is examined and given explicitly for several cases.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Varner, G. (2015) Unique Measure for the Time-Periodic Navier-Stokes on the Sphere Navier-Stokes on the Sphere. Applied Mathematics, 6, 1809-1830. doi: 10.4236/am.2015.611160.

References

[1] Kuksin, S. and Shirikyan, A. (2000) Stochastic Dissipative PDE’s and Gibbs Measures. Communications in Mathematical Physics, 213, 291-330.
http://dx.doi.org/10.1007/s002200000237
[2] Kuksin, S. and Shirikyan, A. (2001) A Coupling Approach to Randomly Forced Nonlinear PDE’s. I. Communications in Mathematical Physics, 221, 351-366.
http://dx.doi.org/10.1007/s002200100479
[3] Kuksin, S. and Shirikyan, A. (2006) Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space Dimensions. European Mathematical Society, Zürich.
http://dx.doi.org/10.4171/021
[4] Kuksin, S. and Shirikyan, A. (2002) Coupling Approach to White-Forced Nonlinear PDEs. Journal de Mathématiques Pures et Appliquées, 81, 567-602.
http://dx.doi.org/10.1016/S0021-7824(02)01259-X
[5] Shirikyan, A. (2005) Ergodicity for a Class of Markov Processes and Applications to Randomly Forced PDE’s. I. Russian Journal of Mathematical Physics, 12, 81-96.
[6] Varner, G. (2013) Stochastically Perturbed Navier-Stokes System on the Rotating Sphere. PhD Dissertation, The University of Missouri, Columbia.
[7] Shirikyan, A. (2015) Control and Mixing for 2D Navier-Stokes Equations with Space-Time Localised Noise. Annales Scientifiques de l’ENS, 48, 253-280.
[8] Brzezniak, Z., Goldys, B. and Le Gia, Q.T. (2015) Random Dynamical Systems Generated by Stochastic Navier-Stokes Equation on the Rotating Sphere. Journal of Mathematical Analysis and Applications, 426, 505-545.
http://dx.doi.org/10.1016/j.jmaa.2015.01.054
[9] Il’in, A.A. (1991) The Navier-Stokes and Euler Equations on Two-Dimensional Closed Manifolds. Mathematics of the USSR-Sbornik, 69, 559-579.
http://dx.doi.org/10.1070/SM1991v069n02ABEH002116
[10] Ilyin, A. (2004) Stability and Instability of Generalized Kolmogorov Flows on the Two-Dimensional Sphere. Advances in Differential Equations, 9, 979-1008.
[11] Dymnikov, V. and Filatov, A. (1997) Mathematics of Climate Modeling. Birkhäuser, Boston.
[12] Kuksin, S. and Shirikyan, A. (2012) Mathematics of Two-Dimensional Turbulence. Cambridge University Press, New York.
http://dx.doi.org/10.1017/CBO9781139137119
[13] Robinson, J. (2001) Infinite-Dimensional Dynamical Systems. Cambridge University Press, New York.
http://dx.doi.org/10.1007/978-94-010-0732-0
[14] Heywood, J. and Rannacher, R. (1986) An Analysis of Stability Concepts for the Navier-Stokes Equations. Journal für die Reine und Angewandte Mathematik, 372, 1-33.
[15] Furshikov, A. and Vishik, M. (1988) Mathematical Problems of Statistical Hydromechanics. Kluwer Academic Publishers, Boston.
[16] Lions, J.L. and Magenes, E. (1972) Non-Homogeneous Boundary Value Problems, II. Spring-Verlag, Heidelberg and New York.
[17] Kuksin, S., Piatnitski, A. and Shirikyan, A. (2002) A Coupling Approach to Randomly Forced Nonlinear PDE’s. II. Communications in Mathematical Physics, 230, 81-85.
http://dx.doi.org/10.1007/s00220-002-0707-2
[18] Dymnikov, V. and Filatov, A. (1997) Mathematics of Climate Modeling. Birkh?user, Boston.
[19] Il’in, A.A. (1994) Partly Dissipative Semi-Groups Generated by the Navier-Stokes System on Two-Dimensional Manifolds, and Their Attractors. Russian Academy of Sciences. Sbornik Mathematics, 78, 159-182.
http://dx.doi.org/10.1070/sm1994v078n01abeh003458
[20] Skiba, Y. (2012) On the Existence and Uniqueness of Solution to Problems of Fluid Dynamics on a Sphere. Journal of Mathematical Analysis and Applications, 388, 627-644.
http://dx.doi.org/10.1016/j.jmaa.2011.10.045

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.