[1]
|
Kuksin, S. and Shirikyan, A. (2000) Stochastic Dissipative PDE’s and Gibbs Measures. Communications in Mathematical Physics, 213, 291-330. http://dx.doi.org/10.1007/s002200000237
|
[2]
|
Kuksin, S. and Shirikyan, A. (2001) A Coupling Approach to Randomly Forced Nonlinear PDE’s. I. Communications in Mathematical Physics, 221, 351-366. http://dx.doi.org/10.1007/s002200100479
|
[3]
|
Kuksin, S. and Shirikyan, A. (2006) Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space Dimensions. European Mathematical Society, Zürich. http://dx.doi.org/10.4171/021
|
[4]
|
Kuksin, S. and Shirikyan, A. (2002) Coupling Approach to White-Forced Nonlinear PDEs. Journal de Mathématiques Pures et Appliquées, 81, 567-602. http://dx.doi.org/10.1016/S0021-7824(02)01259-X
|
[5]
|
Shirikyan, A. (2005) Ergodicity for a Class of Markov Processes and Applications to Randomly Forced PDE’s. I. Russian Journal of Mathematical Physics, 12, 81-96.
|
[6]
|
Varner, G. (2013) Stochastically Perturbed Navier-Stokes System on the Rotating Sphere. PhD Dissertation, The University of Missouri, Columbia.
|
[7]
|
Shirikyan, A. (2015) Control and Mixing for 2D Navier-Stokes Equations with Space-Time Localised Noise. Annales Scientifiques de l’ENS, 48, 253-280.
|
[8]
|
Brzezniak, Z., Goldys, B. and Le Gia, Q.T. (2015) Random Dynamical Systems Generated by Stochastic Navier-Stokes Equation on the Rotating Sphere. Journal of Mathematical Analysis and Applications, 426, 505-545.http://dx.doi.org/10.1016/j.jmaa.2015.01.054
|
[9]
|
Il’in, A.A. (1991) The Navier-Stokes and Euler Equations on Two-Dimensional Closed Manifolds. Mathematics of the USSR-Sbornik, 69, 559-579. http://dx.doi.org/10.1070/SM1991v069n02ABEH002116
|
[10]
|
Ilyin, A. (2004) Stability and Instability of Generalized Kolmogorov Flows on the Two-Dimensional Sphere. Advances in Differential Equations, 9, 979-1008.
|
[11]
|
Dymnikov, V. and Filatov, A. (1997) Mathematics of Climate Modeling. Birkhäuser, Boston.
|
[12]
|
Kuksin, S. and Shirikyan, A. (2012) Mathematics of Two-Dimensional Turbulence. Cambridge University Press, New York. http://dx.doi.org/10.1017/CBO9781139137119
|
[13]
|
Robinson, J. (2001) Infinite-Dimensional Dynamical Systems. Cambridge University Press, New York.http://dx.doi.org/10.1007/978-94-010-0732-0
|
[14]
|
Heywood, J. and Rannacher, R. (1986) An Analysis of Stability Concepts for the Navier-Stokes Equations. Journal für die Reine und Angewandte Mathematik, 372, 1-33.
|
[15]
|
Furshikov, A. and Vishik, M. (1988) Mathematical Problems of Statistical Hydromechanics. Kluwer Academic Publishers, Boston.
|
[16]
|
Lions, J.L. and Magenes, E. (1972) Non-Homogeneous Boundary Value Problems, II. Spring-Verlag, Heidelberg and New York.
|
[17]
|
Kuksin, S., Piatnitski, A. and Shirikyan, A. (2002) A Coupling Approach to Randomly Forced Nonlinear PDE’s. II. Communications in Mathematical Physics, 230, 81-85. http://dx.doi.org/10.1007/s00220-002-0707-2
|
[18]
|
Dymnikov, V. and Filatov, A. (1997) Mathematics of Climate Modeling. Birkh?user, Boston.
|
[19]
|
Il’in, A.A. (1994) Partly Dissipative Semi-Groups Generated by the Navier-Stokes System on Two-Dimensional Manifolds, and Their Attractors. Russian Academy of Sciences. Sbornik Mathematics, 78, 159-182.http://dx.doi.org/10.1070/sm1994v078n01abeh003458
|
[20]
|
Skiba, Y. (2012) On the Existence and Uniqueness of Solution to Problems of Fluid Dynamics on a Sphere. Journal of Mathematical Analysis and Applications, 388, 627-644. http://dx.doi.org/10.1016/j.jmaa.2011.10.045
|