Microalgae Lipid and Biodiesel Production: A Brazilian Challenge

Abstract

Global increases in atmospheric CO2 and climate change are drawing considerable attention to identify sources of energy with lower environmental impact than those currently in use. Biodiesel production from microalgae lipids can, in the future, occupy a prominent place in energy generation because it represents a sustainable alternative to petroleum-based fuels. Several species of microalgae produce large amounts of lipids per biomass unit. Triacylglycerol is the fatty acid used for biodiesel production and the main source of energy reserves in microalgae. The current literature indicates that nutrient limitations can lead to triacylglycerol accumulation in different species of microalgae. Further efforts in microalgae screening for biodiesel production are needed to discover a native microalgae that will be feasible for biodiesel production in terms of biomass productivity and oil. This revision focuses in the biotechnological potential and viability of biodiesel production from microalgae. Brazil is located in a tropical region with high light rates and adequate average temperatures for the growth of microalgae. The wide availability of bodies of water and land will allow the country to produce renewable energy from microalgae.

Share and Cite:

T. Miranda, C. , F. Pinto, R. , V. N. de Lima, D. , V. Viegas, C. , M. da Costa, S. and M. F. O. Azevedo, S. (2015) Microalgae Lipid and Biodiesel Production: A Brazilian Challenge. American Journal of Plant Sciences, 6, 2522-2533. doi: 10.4236/ajps.2015.615254.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnung, J.H., Posten, C., Kruse, O. and Hankamer, B. (2008) Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. Bioenergy Research, 1, 20-43.
http://dx.doi.org/10.1007/s12155-008-9008-8
[2] EPE (2014) Brazilian Energy Balance 2014 Year 2013. Empresa de Pesquisa Energética (EPE), Rio de Janeiro.
[3] Kan, S.A., Rashmi, Hussain, M.Z., Prasad, S. and Banerjee, U.C. (2009) Prospects of Biodiesel Production from Microalgae in India. Renewable & Sustainable Energy Reviews, 13, 2361-2372.
http://dx.doi.org/10.1016/j.rser.2009.04.005
[4] Pant, D., Bogaret, G.V., Diels, L. and Vanbroekhoven, K. (2010) A Review of the Substrates Used in Microbial Fuel Cells (MFCs) for Sustainable Energy Production. Bioresource Technology, 101, 1533-1543.
http://dx.doi.org/10.1016/j.biortech.2009.10.017
[5] Chisti, Y. (2007) Biodiesel from Microalgal. Biotechnology Advances, 25, 294-306.
http://dx.doi.org/10.1016/j.biotechadv.2007.02.001
[6] Greenwell, H.C., Laurens, L.M.L., Shields, R.J., Lovitt, R.W. and Flynn, K.J. (2010) Placing Microalgae on the Biofuels Priority List: A Review of the Technological Challenges. Journal of the Royal Society Interface, 7, 703-726.
http://dx.doi.org/10.1098/rsif.2009.0322
[7] Harun, R., Singh, M., Forde, G.M. and Danquah, M.K. (2010) Bioprocess Engineering of Microalgae to Produce a Variety of Consumer Products. Renewable & Sustainable Energy Reviews, 14, 1037-1047.
http://dx.doi.org/10.1016/j.rser.2009.11.004
[8] Rajendran, R., Kanimozhi, B., Prabhavathi, P., Dinesh Kumar, S., Santhanam, P., Abirami, M., Karthlk Sundaram, S. and Manikandan, A. (2015) A Method of Central Composite Design (CCD) for Optimization of Biodiesel Production fom Chlorella vulgaris. Journal of Petroleum & Environmental Biotechnology, 6, 3.
[9] Guschina, I.A. and Harwood, J.L. (2006) Lipids and Lipid Metabolism in Eukaryotic Algae. Progress in Lipid Research, 45,160-186.
http://dx.doi.org/10.1016/j.plipres.2006.01.001
[10] Bicudo, C.E. and Menezes, M. (2006) Gêneros de algas de águas continentais do Brasil. Chave para identificação e descrições. Editora Rima, Brazil.
[11] Singh, A., Nigam, P.S. and Murphy, J.D. (2011) Renewable Fuels from Microalgae: An Answer to Debatable Land Based Fuels. Bioresource Thechnology, 102, 10-16.
http://dx.doi.org/10.1016/j.biortech.2010.06.032
[12] Becker, E.W. (2004) Microalgae in Human and Animal Nutrition. In: Richmond, A., Ed., Handbook of Microalgal Culture, Blackwell, Oxford, 312-351.
[13] Wiltshire, K.H., Boersma, M., Molle, A. and Buhtz, H. (2000) Extraction of Pigments and Fatty Acids from the Green Alga Scenedesmus obliquus (Chlorophyceae). Aquatic Ecology, 34, 119-126.
http://dx.doi.org/10.1023/A:1009911418606
[14] Work, V.H., D’Adamo, S., Radakovits, R., Jinkerson, R.E. and Posewitz, M.C. (2012) Improving Photosynthesis and Metabolic Networks for the Competitive Production of Phototroph-Derived Biofuels. Current Opinion in Biotechnology, 23, 290-297.
http://dx.doi.org/10.1016/j.copbio.2011.11.022
[15] Borowitzka, M.A. and Borowitzka, L.J. (1988) Microalgal Biotechnology. Cambridge University Press, Cambridge.
[16] Ben-Amotz, A., Saish, A. and Avron, M. (1989) Mode of Action of the Massively Accumulated β-Carotene of Du- naliella bardawil in Protecting the Algae against Damage by Excess Irradiation. Plant Phisiology, 91, 1040-1043.
http://dx.doi.org/10.1104/pp.91.3.1040
[17] Benemann, J.R. (2000) Hydrogen Production by Microalgae. Journal of Applied Phycology, 12, 291-300.
http://dx.doi.org/10.1023/A:1008175112704
[18] Raposo, M.F.J., Morais, R.M.S.C. and Morais, A.M.M.B. (2014) Health Apllications of Bioactive Compounds from Microalgae. Life Sciences, 93, 479-486.
http://dx.doi.org/10.1016/j.lfs.2013.08.002
[19] Richmond, A. (1988) Handbook of Microalgal Mass Culture. CRC Press, Boca Raton.
[20] Ben-Amotz, A. (1995) New Mode of Dunaliella Biotechology: Two-Phase Growth for β-Carotene Production. Journal of Applied Phycology, 7, 65-68.
http://dx.doi.org/10.1007/BF00003552
[21] Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P. (1998) A Look Back at the US Department of Energy’s Aquatic Species Program—Biodiesel from Algae. National Renewable Energy Laboratory, Report NREL/TP-580-24190.
[22] Koller, M., Salerno, A., Tuffner, P., Koinigg, M., Bochzelt, H., Schober, S., Pieber, S., Schnitzer, H., Mittelbach, M. and Braunegg, G. (2012) Characteristics and Potential of Microalgal Cultivation Strategies: A Review. Journal of Cleaner Production, 37, 377-388.
http://dx.doi.org/10.1016/j.jclepro.2012.07.044
[23] Ho, S.H., Chen, C.Y. and Chang, J.S. (2012) Effect of Light Intensity and Nitrogen Starvation on CO2 Fixation and Lipid/Carbohydrate Production of an Indigenous Microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244-252.
http://dx.doi.org/10.1016/j.biortech.2011.11.133
[24] Lv, J.-M., Cheng, L.H., Xu, X.H., Zhang, L. and Chen, H.L. (2010) Enhanced Lipid Productions of Chlorella vulgaris by Adjustment of Cultivation Conditions. Bioresource Technology, 101, 6797-6804.
http://dx.doi.org/10.1016/j.biortech.2010.03.120
[25] Liu, J., Huang, J., Sun, Z., Zhong, Y., Jiang, Y. and Chen, F. (2010) Differential Lipid and Fatty Acid Profiles of Pho- toautothrophic and Heterotrofic Chlorella zofingiensis: Assessment of Algal Oils for Biodiesel Production. Bioresource Technology, 102, 106-110.
http://dx.doi.org/10.1016/j.biortech.2010.06.017
[26] Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G. and Tredici, M.R. (2009) Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobiorreactor. Bio- technology and Bioengeneering, 102, 100-112.
http://dx.doi.org/10.1002/bit.22033
[27] Parmar, A., Singh, N.K., Pandey, A., Gnansounou, E. and Madamwar, D. (2011) Cyanobacteria and Microalgae: A Positive Prospect for Biofuels. Bioresource Technology, 102, 10163-10172.
http://dx.doi.org/10.1016/j.biortech.2011.08.030
[28] Wahidin, S., Idris, A. and Shaleh, S.R.M. (2013) The Influence of Light Intensity and Photoperiod on the Growth and Lipid Content of Microalgae Nannochloropsis sp. Bioresource Technology, 129, 7-11.
http://dx.doi.org/10.1016/j.biortech.2012.11.032
[29] Giordano, M., Beardall, J. and Raven, J.A. (2005) CO2 Concentrating Mechanisms in Algae: Mechanisms, Environmental Modulation and Evolution. Annual Review of Plant Biology, 56, 99-131.
http://dx.doi.org/10.1146/annurev.arplant.56.032604.144052
[30] Gardner, R.D., Lohman, E., Gerlach, R., Cooksey, K.F. and Peyton, B.M. (2012) Comparison of CO2 and Bicarbonate as Inorganic Carbon Sources for Triacylglycerol and Starch Accumulation in Chlamydomonas reinhardtii. Biotechnology and Bioengeneering, 110, 87-96.
http://dx.doi.org/10.1002/bit.24592
[31] Huang, G., Chen, F., Wei, D., Zhang, X. and Chen, G. (2010) Biodiesel Production by Microalgal Biotechnology. Applied Energy, 87, 38-46.
http://dx.doi.org/10.1016/j.apenergy.2009.06.016
[32] Fogg, G.E. and Thake, B. (1987) Algae Cultures and Phytoplankton Ecology. 3rd Edition, The University of Winsconsins Press Ltd., London.
[33] Dowhan, W. (1997) Molecular Basis for Membrane Phospolipd Diversity: Why Are There So Many Lipids? Annual Review of Biochemistry, 66,199-232.
http://dx.doi.org/10.1146/annurev.biochem.66.1.199
[34] Reynolds, C.S. (2006) Ecology of Phytoplankton: Ecology, Biodiversity and Conservation. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511542145
[35] Andersen, R.A., Ed. (2005) Algal Culturing Techniques. Elsevier Academic Press, New York, 578 p.
[36] Harold, F.M. (1963) Enzymic and Genetic Control of Polyphosphate Accumulation in Aerobacter aerogenes. Journal of General Microbiology, 35, 81-90.
http://dx.doi.org/10.1099/00221287-35-1-81
[37] Hutchinson, G.E. (1973) Eutrophication. American Scientist, 61, 269-279.
[38] Yao, B., Xi, B.D., Hu, C.M., Huo, S.L., Su, J. and Liu, H.L. (2011) A Model and Experimental Study of Phosphate Uptake Kinetics in Algae: Considering Surface Adsorption and P-Stress. Journal of Environmental Sciences, 23, 189- 198.
http://dx.doi.org/10.1016/S1001-0742(10)60392-0
[39] Piorreck, M., Baasch, K.H. and Pohl, P. (1984) Biomass Production, Total Protein, Chlorophylls, Lipids and Fatty Acids of Freshwater Green and Blue-Green Algae under Different Nitrogen Regimes. Phytochemistry, 23, 207-216.
http://dx.doi.org/10.1016/S0031-9422(00)80304-0
[40] Msanne, J., Xu, D., Konda, A.R., Casas-Mollano, A.J., Awada, T., Cahoon, E.B. and Cerutti, H. (2012) Metabolic and Gene Expression Changes Triggered by Nitrogen Deprivation in the Photoautotrophically Grown Microalgae Chalmydomonas reinhardtii and Coccomyxa sp. Phytochemistry, 75, 50-59.
http://dx.doi.org/10.1016/j.phytochem.2011.12.007
[41] Courchesne, N.M.D., Parisien, A., Wang, B. and Lan, C.Q. (2009) Enhancement of Lipid Production Using Biochemical, Genetic and Transcription Factor Engineering Approaches. Journal of Biotechnology, 141, 31-41.
http://dx.doi.org/10.1016/j.jbiotec.2009.02.018
[42] Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R. and Mishara, S. (2014) Nitrogen Srtess Triggered Biochemical and Morphological Changes in the Microalgae Scenedesmus sp. CCNM1077. Bioresourource Technology, 156, 146-154.
http://dx.doi.org/10.1016/j.biortech.2014.01.025
[43] Nacimento, I.A., Marques, S.S.I., Cabanelas, I.T.D., Pereira, S.A., Duzian, J.I., Souza, C.O., Vich, D.V., Carvalho, G.C. and Nascimento, M.A. (2013) Screening Microalgae Strais for Biodiesel Production: Lipid Productivity and Estimation of Fuel Quality Based on Fatty Acids Profiles as Selective Criteria. Bioenergy Research, 6, 1-13.
http://dx.doi.org/10.1007/s12155-012-9222-2
[44] Derner, R.B., Ohse, S., Vilela, M., Carvalho, S.M. and Efett, R. (2006) Microalgas, produtos e aplicações. Ciência Rural, 36, 1959-1967.
http://dx.doi.org/10.1590/S0103-84782006000600050
[45] Chiu, S.Y., Kao, C.Y., Tsai, M.T., Ong, S.C., Chen, C.H. and Lin, C.S. (2008) Lipid Accumulation and CO2 Utilization of Nannochloropsis oculata in Response to CO2 Aeration. Bioresource Technology, 100, 833-838.
http://dx.doi.org/10.1016/j.biortech.2008.06.061
[46] Pereira, C.M.P., Hobuss, C.B., Maciel, J.V., Ferreira, L.R., Del Pino, F.B. and Mesko, M.F. (2013) Biodiesel renovável derivado de microalgas: Avanço e perspectivas tecnológicas. Quimica Nova, 35, 2013-2018.
[47] Li, S., Xu, J.L., Chen, J., Chen, J.J., Zhou, C.X. and Yan, X.J. (2014) The Major Lipid Changes of Some Important Diet Microalgae during the Entire Growth Phase. Aquaculture, 428, 104-110.
http://dx.doi.org/10.1016/j.aquaculture.2014.02.032
[48] Sánchez-Saavedra, M.P. and Votolina, D. (2005) The Growth Rate, Biomass Production and Composition of Chaetoceros sp. Grown with Different Light Sources. Aquacultural Engineering, 35, 161-165.
http://dx.doi.org/10.1016/j.aquaeng.2005.12.001
[49] Cartens, M., Molina, E., Robles, A., Giménez, A. and Ibénez, M.J. (1996) Eicosapentaenoic Acid (20:4n-3) from the Marine Microalga Phaeodactylum tricornutum. Journal of the American Oil Chemists Society, 73, 1025-1031.
http://dx.doi.org/10.1007/BF02523411
[50] Molina Grima, E., Belarbi, E.-H., Acién Fernández, F.G., Robles Medina, A. and Chisti, Y. (2003) Recovery of Microalgal Biomass and Metabolites: Process Options and Economics. Biotechnology Advances, 20, 491-515.
http://dx.doi.org/10.1016/S0734-9750(02)00050-2
[51] Giménez Giménez, A., Ibáñez, M.J., Robles, A., Molina, E., García, S. and Esteban, L. (1998) Downstream Processing and Purification of Eicosapentaenoic (20:5n-3) and Arachidonic Acids (20:4n-6) from the Microalga Porphyridium cruentum. Bioseparation, 7, 89-99.
http://dx.doi.org/10.1023/A:1008021330785
[52] Rodriguez-Ruiz, J., Belarbi, E.H., Sánchez, J.L.G. and Alonso, D.L. (1998) Rapid Simultaneous Lipid Extraction and Transesterification for Fatty Acid Analyses. Biotechnology Techniques, 12, 689-691.
http://dx.doi.org/10.1023/A:1008812904017
[53] Ma, F. and Hanna, M.A. (1999) Biodiesel Production: A Review. Bioresource Technology, 70, 1-15.
http://dx.doi.org/10.1016/S0960-8524(99)00025-5
[54] Yoo, C., Jun, S.Y., Lee, J.Y., Ahn, C.Y. and Oh, H.M. (2010) Selection of Microalgae for Lipid Production under High Levels Carbon Dioxide. Bioresource Technology, 101, S71-S74.
http://dx.doi.org/10.1016/j.biortech.2009.03.030
[55] La Russa, M., Bogen, C., Uhmeyer, A., Doebbe, A., Filippone, E., Kruse, O. and Mussgnug, J.H. (2012) Functional Analysis of Three Type-2 DGAT Homologue Genes for Triacylglycerol Production in the Green Microalga Chla- mydomonas Lacustrian Phytoplankton. Journal of Plankton Research, 19, 469-490.
[56] Léveillé, J.C., Amblard, C. and Bourdier, G. (1997) Fatty Acids as Specific Algal Markers in a Natural Lacustrian Phytoplankton. Journal of Plankton Research, 19, 469-490.
http://dx.doi.org/10.1093/plankt/19.4.469
[57] Reuss, N. and Poulsen, L.K. (2002) Evaluation of Fatty Acids as Biomarkers for a Natural Plankton Community: A Field Study of a Spring Bloom and Post-Bloom Period off West Greenland. Marine Biology, 141, 423-434.
http://dx.doi.org/10.1007/s00227-002-0841-6
[58] Sushchik, N.N., Gladyshev, M.I., Ivanova, E.A. and Kravchuk, E.S. (2010) Seasonal Distribution and Fatty Acid Compositon of Littoral Microalgae in the Yenisei River. Journal of Applied Phycology, 22, 11-24.
http://dx.doi.org/10.1007/s10811-009-9418-9
[59] Lang, I., Hodac, L. and Friedl Feussner, T. (2011) Fatty Acid Profiles and Their Distribution Patterns in Microalgae: A Comprehensive Analysis of More than 2000 Strains from the SAG Culture Collection. Plant Biology, 11, 124.
http://dx.doi.org/10.1186/1471-2229-11-124
[60] Uziel, M., Oswald, W.J. and Gouleke, C.G. (1975) Solar Energy Fixation and Conversion with Algal Bacterial Systems. NSF/RANN/SE/GI-39216/FR/75Q5 Sanitary Engineering Research Laboratory, University of California, Berkeley, CA.
[61] Mata, T.M., Martins, A.A. and Caetano, N.S. (2010) Microalgae for Biodiesel Production and Other Applications: A Review. Renewable and Sustainable Energy Reviews, 14, 217-232.
http://dx.doi.org/10.1016/j.rser.2009.07.020
[62] Pulz, O. and Gross, W. (2008) Valuable Products from Biotechnology of Microalgae. Applied Microbiology and Biotechnology, 65, 635-648.
http://dx.doi.org/10.1007/s00253-004-1647-x
[63] Ho, S.-H., Huang, S.-W., Chen, C.-Y., Hasunuma, T., Kondo, A. and Chang, J.-S. (2013) Bioethanol Production Using Carbohydrate-Rich Microalgae Biomass as Feedstock. Bioresource Technology, 135, 191-198.
http://dx.doi.org/10.1016/j.biortech.2012.10.015
[64] Dayananda, C., Sarada, R., Usha-Rani, M., Shamala, T.R. and Ravishankar, G.A. (2007) Autotrophic Cultivation of Botryococcus braunii for the Production of Hydrocarbons and Exopolysaccharides in Various Media. Biomass and Bioenergy, 31, 87-93.
http://dx.doi.org/10.1016/j.biombioe.2006.05.001
[65] Musharraf, S.G., Ahmed, M.A., Zehra, N., Kabir, N., Choudhary, M. and Rahman, A. (2012) Biodiesel Production from Microalgal Isolates Southern Pakistan and Quantification of FAMEs by GC-MS/MS Analysis. Chemistry Central Journal, 6, 149.
http://dx.doi.org/10.1186/1752-153X-6-149
[66] Rawat, I., Kumar, R., Mutanda, T. and Bux, F. (2013) Biodiesel from Microalgae: A Critical Evaluation from Laboratory to Large Scale Production. Applied Energy, 103, 444-467.
http://dx.doi.org/10.1016/j.apenergy.2012.10.004
[67] Becker, E.W. (1994) Microalgae: Biotechnology and Microbiology. Cambridge University Press, Cambridge.
[68] Chisti, Y. (2008) Biodiesel from Microalgae Beats Bioethanol. Trends in Biotechnology, 26, 126-131.
http://dx.doi.org/10.1016/j.tibtech.2007.12.002
[69] Su, C.H., Chien, L.J., Gomes, J., Lin, Y.S., Yu, Y.K., Liou, J.S. and Syu, R.J. (2010) Factors Affecting Lipid Accumulation by Nannochloropsis oculata in a Two Stage Cultivation Process. Journal of Applied Phycology, 23, 903- 908. http://dx.doi.org/10.1007/s10811-010-9609-4
[70] Miranda, C.T. (2011). Avaliação dos efeitos da intensidade luminosa no crescimento e produção de lipídeos por Ankistrodesmus sp. (Chlorophyceae) visando a produção de biodiesel. Dissertation, Rio de Janeiro Federal University, Rio de Janeiro.
[71] Pereira, C.M.P., Hobuss, C.B., Maciel, J.V., Ferreira, L.R., Del Pino, F.B., Mesko, M.F., Jacob-Lopes, E. and Neto, P.C. (2012) Biodiesel renovável derivado de microalgas: Avanços e perspectivas tecnológicas. Quimica Nova, 35, 2013-2018.
http://dx.doi.org/10.1590/s0100-40422012001000022
[72] Fukuda, H., Kondo, A. and Noda, H. (2001) Biodiesel Fuel Production by Transesterification of Oils. Journal of Bioscience and Bioengineering, 92, 405-416.
http://dx.doi.org/10.1016/S1389-1723(01)80288-7
[73] Marchetti, J.M., Miguel, V.U. and Errazu, A.F. (2007) Possible Methods for Biodiesel Production. Renewable and Sustainable Energy Reviews, 11, 1300-1311.
http://dx.doi.org/10.1016/j.rser.2005.08.006
[74] Monyem, A. and Van Gerpen, J.H. (2001) The Effect of Biodiesel Oxidation on Regime Permance and Emissions. Biomass and Bioenergy, 20, 317-325.
http://dx.doi.org/10.1016/S0961-9534(00)00095-7
[75] Boehman, A.L. (2005) Biodiesel Production and Processing. Fuel Processing Technology, 86, 1057-1058.
http://dx.doi.org/10.1016/j.fuproc.2004.11.001
[76] Khalil, C.N. (2006) As Tecnologias de Produção de Biodiesel. Coletanea de artigos—O futuro da indústria: Biodiesel. Ministério do Desenvolvimento, Indústria e Comércio Exterior, Brazil.
[77] Miao, X. and Wu, Q. (2006) Biodiesel Production from Heterotrophic Microalgal Oil. Bioresource Technology, 97, 841-846.
http://dx.doi.org/10.1016/j.biortech.2005.04.008
[78] Griffiths, M.J., van Hille, R.P. and Harrison, S.T.L. (2010) Selection of Direct Tansesterification as the Preferred Method for Assay of Fatty Acid Content of Microalgae. Lipids, 45, 1053-1060.
http://dx.doi.org/10.1007/s11745-010-3468-2
[79] Liu, B. and Zhao, Z.B. (2007) Biodiesel Production by Direct Methanolysis of Oleaginous Microbial Biomass. Journal of Chemical Technology and Biotechnology, 82, 775-780.
[80] Suarez, P.A.Z., Santos, A.L.F., Rodrigues, J.P. and Alves, M.B. (2009) Biocombustíveis a partir de óleos e gorduras: desafios tecnológicos para viabilizá-los. Quimica Nova, 32, 768-775.
http://dx.doi.org/10.1590/S0100-40422009000300020
[81] Nagle, N. and Lemke, P. (1990) Production of Methyl Ester from Microalgae. Biotechnology and Applied Biochemistry, 25, 355-361.
http://dx.doi.org/10.1007/BF02920259
[82] Shuit, S., Lee, K., Kamaruddin, A. and Yusup, S. (2010) Reactive Extraction and in Situ Esterification of Jatropha curcas Seeds for the Production of Biodiesel. Fuel, 89, 527-530.
http://dx.doi.org/10.1016/j.fuel.2009.07.011
[83] Almarales, A., Chenard, G., Abdala, R., Gomes, D.A., Reyes, Y. and Tapanes, N.O. (2012) Hydroesterification of Nannochloropsis oculata Microalga’s Biomass to Biodiesel on Al2O3 Supported Nb2O5 Catalyst. Natural Science, 4, 204-210.
http://dx.doi.org/10.4236/ns.2012.44031
[84] Reyes, Y., Chenard, G., Aranda, D.G., Mesquita, C., Fortes, M., João, R. and Bacellar, L. (2012) Biodiesel Production by Hydroesterification of Microalgal Biomass Using Heterogeneous Catalyst. Natural Science, 4, 778-783.
http://dx.doi.org/10.4236/ns.2012.410102
[85] Lardon, L., Hélias, A., Sialve, B., Steyer, J.P. and Bernard, O. (2009) Life-Cycle Assessment of Biodiesel Production Froma Microalgae. Environmental Science & Technology, 43, 6475-6481.
[86] Carioca, J.O.B., Hiluy Filho, J.J., Leal, M.R.L.V. and Macambira, F.S. (2009) The Hard Choice for Alternative Biofuels to Diesel in Brazil. Biotechnology Advances, 27, 1043-1060.
http://dx.doi.org/10.1016/j.biotechadv.2009.05.012
[87] Stuart, A.S., Atthew, P.D., John, S.D., Irmtraud, H., Christopher, J.H., David, J.L.S. and Alison, G.S. (2010) Biodiesel from Microalgae: Challenges and Prospects. Current Opinion in Biotechnology, 21, 277-286.
http://dx.doi.org/10.1016/j.copbio.2010.03.005
[88] Sydney, E.B., da Silva, T.E., Tokasrki, A., Novak, A.C., de Carvalho, J.C., Woiciecohwski, A.L., Larroche, C. and Soccol, C.R. (2011) Screening of Microalgae with Potential for Biodiesel Production and Nutrient Removal from Trated Domestic Sewage. Applied Energy, 88, 3291-3294.
http://dx.doi.org/10.1016/j.apenergy.2010.11.024
[89] Franco, A.L.C., Lôbo, I.P. and Cruz, R.S. (2013) Biodiesel de microalgas: Avanços e desafios. Quimica Nova, 36, 437-448.
http://dx.doi.org/10.1590/S0100-40422013000300015

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.