Assessing Ecotoxicity in Marine Environment Using Luminescent Microalgae: Where Are We At?


Nowadays, microalgae are particularly used to assess the environmental impact of contaminants in aquatic systems. Naturally present in some algal species, bioluminescence is highly used in application fields related to environmental monitoring. Bioluminescent dinoflagellates have played a pivotal role in this domain. When exposed to heavy metals or toxic organic compounds, bioluminescent dinoflagellates have the capacity to decrease light emission. In addition, new molecular tools allow the possibility to produce genetically modified microorganisms which are able to perform luminescence. Combined with the luciferase reporter gene, two main genetic constructions can be employed. Activation of a specific inducible promoter induces the luminescence gene transcription and this signal increases over time. Constitutive promoters result in a high basal expression level of the reporter gene. During exposure to a potential toxic pollutant, the basal expression level will decrease due to the toxic effect. Toxicity bioassays based on engineered luminescent Chlorophyta microalgae are among the most sensitive tests and are an invaluable complement to classical toxicity assays.

Share and Cite:

Sanchez-Ferandin, S. (2015) Assessing Ecotoxicity in Marine Environment Using Luminescent Microalgae: Where Are We At?. American Journal of Plant Sciences, 6, 2502-2509. doi: 10.4236/ajps.2015.615252.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Behrenfeld, M.J., O’Malley, R.T., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, G.C., Milligan, A.J., Falkowski, P.G., Letelier, R.M. and Boss, E.S. (2006) Climate-Driven Trends in Contemporary Ocean Productivity. Nature, 444, 752-755.
[2] Klaine, S.J. and Lewis, M.A. (1995) Algal and Plant Toxicity Testing. In: Hoffman, D.J., Rattner, B.A., Burton Jr., G.A. and Cairns Jr., J., Eds., Handbook of Ecotoxicology, Lewis Publishers, Boca Raton, 163-184.
[3] Stauber, J.L. and Davies, C.M. (2000) Use and Limitations of Microbial Bioassays for Assessing Copper Bioavailability in the Aquatic Environment. Environmental Reviews, 8, 255-301.
[4] Stauber, J.L., Franklin, N.M. and Adams, M.S. (2002) Applications of Flow Cytometry to Ecotoxicity Testing Using Microalgae. Trends in Biotechnology, 20, 141-143.
[5] Wu, S., Zhang, H., Yu, X. and Qiu, L. (2014) Toxicological Responses of Chlorella vulgaris to Dichloromethane and Dichloroethane. Environmental Engineering Science, 31, 9-17.
[6] Aravantinou, A.F., Tsarpali, V., Dailianis, S. and Manariotis, I.D. (2015) Effect of Cultivation Media on the Toxicity of ZnO Nanoparticles to Freshwater and Marine Microalgae. Ecotoxicology and Environmental Safety, 114, 109-116.
[7] de Morais, P., Stoichev, T., Basto, M.C.P., Ramos, V., Vasconcelos, V.M. and Vasconcelos, M.T.S.D. (2014) Pentachlorophenol Toxicity to a Mixture of Microcystis aeruginosa and Chlorella vulgaris Cultures. Aquatic Toxicology, 150, 159-164.
[8] Gissi, F., Adams, M.S., King, C.K. and Jolley, D.F. (2015) A Robust Bioassay to Assess the Toxicity of Metals to the Antarctic Marine Microalga Phaeocystis antarctica. Environmental Toxicology and Chemistry, 34, 1578-1587.
[9] Haddock, S.H.D., Moline, M.A. and Case, J.F. (2010) Bioluminescence in the Sea. Annual Review of Marine Science, 2, 443-493.
[10] Wimpee, C.F., Nadeau, T.-L. and Nealson, K.H. (1991) Development of Species-Specific Hybridization Probes for Marine Luminous Bacteria by Using in Vitro DNA Amplification. Applied and Environmental Microbiology, 57, 1319- 1324.
[11] Lee, K.-H. and Ruby, E.G. (1992) Detection of the Light Organ Symbiont, Vibrio fischeri, in Hawaiian Seawater by Using Lux Gene Probes. Applied and Environmental Microbiology, 58, 942-947.
[12] Frommlet, J.C. and Iglesias-Rodriguez, M.D. (2008) Microsatellite Genotyping of Single Cells of the Dinoflagellate Species Lingulodinium polyedrum (Dinophyceae): A Novel Approach for Marine Microbial Population Genetic Studies. Journal of Phycology, 44, 1116-1125.
[13] Baker, A., Robbins, I., Moline, M.A. and Iglesias-Rodriguez, M.D. (2008) Oligonucleotide Primers for the Detection of Bioluminescent Dinoflagellates Reveal Novel Luciferase Sequences and Information on the Molecular Evolution of This Gene. Journal of Phycology, 44, 419-428.
[14] Valiadi, M., Painter, S.C., Allen, J.T., Balch, W.M. and Iglesias-Rodriguez, M.D. (2014) Molecular Detection of Bioluminescent Dinoflagellates in Surface Waters of the Patagonian Shelf during Early Austral Summer 2008. PLoS ONE, 9, e98849.
[15] Valiadi, M., Iglesias-Rodriguez, M.D. and Amorim, A. (2012) Distribution and Genetic Diversity of the Luciferase Gene within Marine Dinoflagellates. Journal of Phycology, 48, 826-836.
[16] Machabee, S., Wall, L. and Morse, D. (1994) Expression and Genomic Organization of a Dinoflagellate Gene Family. Plant Molecular Biology, 25, 23-31.
[17] Tanikawa, N., Akimoto, H., Ogoh, K., Chun, W. and Ohmiya, Y. (2004) Expressed Sequence Tag Analysis of the Di-noflagellate Lingulodinium polyedrum during Dark Phase. Photochemistry and Photobiology, 80, 31-35.
[18] Hackett, J.D., Scheetz, T.E., Yoon, H.S., Soares, M.B., Bonaldo, M.F., Casavant, T.L. and Bhattacharya, D. (2005) Insight into a Dinoflagellate Genome through Expressed Sequence Tag Analysis. BMC Genomics, 6, 80.
[19] Uribe, P., Fuentes, D., Valdes, J., Shmaryahu, A., Zuniga, A., Holmes, D. and Valenzuela, P.D. (2008) Preparation and Analysis of an Expressed Sequence Tag Library from the Toxic Dinoflagellate Alexandrium catenella. Marine Biotechnology, 10, 692-700.
[20] Toulza, E., Shin, M., Blanc, G., Audic, S., Laabir, M., Collos, Y., Claverie, J. and Grzebyk, D. (2013) Gene Expression in Proliferating Cells of the Dinoflagellate Alexandrium catenella (Dinophyceae). Applied and Environmental Microbiology, 76, 4521-4529.
[21] Le Tortorec, A.H., Hakanen, P., Kremp, A., Olsson, J., Suikkanen, S. and Simis, S.G.H. (2014) Stimulated Bioluminescence as an Early Indicator of Bloom Development of the Toxic Dinoflagellate Alexandrium ostenfeldii. Journal of Plankton Research, 36, 412-423.
[22] Van den Hoek, C., Mann, D.G. and Jahns, H.M. (1995) Algae: An Introduction to Phycology. Cambridge University Press, Cambridge.
[23] Bulich, A. (1979) Use of Luminescent Bacteria for Determining Toxicity in Aquatic Environments. ASTM International, 667, 98-106.
[24] Johnson, B.T. (2005) Small-Scale Freshwater Toxicity Investigations—Microtox® Acute Toxicity Test. In: Blaise, C. and Férard, J.-F., Eds., Springer, Netherlands, 69-115.
[25] McFeters, G.A., Bond, P.J., Olson, S.B. and Tchan, Y.T. (1983) A Comparison of Microbial Bioassays for the Detection of Aquatic Toxicants. Water Research, 17, 1757-1762.
[26] Rosen, G., Osorio-Robayo, A., Rivera-Duarte, I. and Lapota, D. (2008) Comparison of Bioluminescent Dinoflagellate (QwikLite) and Bacterial (Microtox) Rapid Bioassays for the Detection of Metal and Ammonia Toxicity. Archives of Environmental Contamination and Toxicology, 54, 606-611.
[27] Vetrova, E., Esimbekova, E., Remmel, N., Kotova, S., Beloskov, N., Kratasyuk, V. and Gitelson, I. (2007) A Bioluminescent Signal System: Detection of Chemical Toxicants in Water. Luminescence, 22, 206-214.
[28] Okamoto, O.K., Shao, L., Hastings, J.W. and Colepicolo, P. (1999) Acute and Chronic Effects of Toxic Metals on Viability, Encystment and Bioluminescence in the Dinoflagellate Gonyaulax polyedra. Comparative Biochemistry and Physiology Part C, 123, 75-83.
[29] Lapota, D., Robayo Osorio, A., Liao, C. and Bjorndal, B. (2007) The Use of Bioluminescent Dinoflagellates as an Environmental Risk Assessment Tool. Marine Pollution Bulletin, 54, 1857-1867.
[30] Craig, J.M., Klerks, P.L., Heimann, K. and Waits, J.L. (2003) Effects of Salinity, pH and Temperature on the Re-Establishment of Bioluminescence and Copper or SDS Toxicity in the Marine Dinoflagellate Pyrocystis lunula Using Bioluminescence as an Endpoint. Environmental Pollution, 125, 267-275.
[31] Adams, M.S., Stauber, J.L., Binet, M.T., Molloy, R. and Gregory, D. (2008) Toxicity of a Secondary-Treated Sewage Effluent to Marine Biota in Bass Strait, Australia: Development of Action Trigger Values for a Toxicity Monitoring Program. Marine Pollution Bulletin, 57, 587-598.
[32] Stauber, J.L., Binet, M.T., Bao, V.W.W., Boge, J., Zhang, A.Q., Leung, K.M.Y. and Adams, M.S. (2008) Comparison of the QwikLiteTM Algal Bioluminescence Test with Marine Algal Growth Rate Inhibition Bioassays. Environmental Toxicology, 23, 617-625.
[33] Luker, K.E. and Luker, G.D. (2010) Bioluminescence Imaging of Reporter Mice for Studies of Infection and Inflammation. Antiviral Research, 86, 93-100.
[34] Zinn, K.R., Chaudhuri, T.R., Szafran, A.A., O’Quinn, D., Weaver, C., Dugger, K., Lamar, D., Kesterson, R.A., Wang, X. and Frank, S.J. (2008) Noninvasive Bioluminescence Imaging in Small Animals. Institute of Laboratory Animal Research Journal, 49, 103-115.
[35] Luker, G., Bardill, J., Prior, J., Pica, C., Piwnica-Worms, and Leib, D.A. (2002) Noninvasive Bioluminescence Imaging of Herpes Simplex Virus Type 1 Infection and Therapy in Living Mice. Journal of Virology, 76, 12149-12161.
[36] Cook, S. and Griffin, D. (2003) Luciferase Imaging of a Neurotropic Viral Infection in Intact Animals. Journal of Virology, 77, 5333-5338.
[37] Hwang, S., Wu, T.-T., Tong, L., Kim, K., Martinez-Guzman, D., Colantonio, A., Uittenbogaart, C. and Sun, R. (2008) Persistent Gammaherpesvirus Replication and Dynamic Interaction with the Host in Vivo. Journal of Virology, 82, 12498-12509.
[38] Zaitseva, M., Kapnick, S., Scott, J., King, L., Manischewitz, J., Sirota, L., Kodihalli, S. and Golding, H. (2009) Application of Bioluminescence Imaging to the Prediction of Lethality in Vaccinia Virus-Infected Mice. Journal of Virology, 83, 10437-10447.
[39] Andreu, N., Zelmer, A., Fletcher, T., Elkington, P.T., Ward, T.H., Ripoll, J., Parish, T., Bancroft, G.J., Schaible, U., Robertson, B.D. and Wiles, S. (2010) Optimisation of Bioluminescent Reporters for Use with Mycobacteria. PLoS ONE, 5, e10777.
[40] Morrissey, R., Hill, C. and Begley, M. (2013) Shining Light on Food Microbiology; Applications of Lux-Tagged Microorganisms in the Food Industry. Trends in Food Science and Technology, 32, 4-15.
[41] Griffiths, M.W. (2000) How Novel Methods Can Help Discover More Information about Foodborne Pathogens. Canadian Journal of Infectious Diseases, 11, 142-153.
[42] Kurvet, I., Ivask, A., Bondarenko, O., Sihtmäe, M. and Kahru, A. (2011) LuxCDABE—Transformed Constitutively Bioluminescent Escherichia coli for Toxicity Screening: Comparison with Naturally Luminous Vibrio fischeri. Sensors, 11, 7865-7878.
[43] Xu, T.T., Close, D.M., Sayler, G.S. and Ripp, S. (2013) Genetically Modified Whole-Cell Bioreporters for Environmental Assessment. Ecological Indicators, 28, 125-141.
[44] Lee, J.H., Mitchell, R.J., Kim, B.C., Cullen, D.C. and Gu, M.B. (2005) A Cell Array Biosensor for Environmental Toxicity Analysis. Biosensors and Bioelectronics, 21, 500-507.
[45] Tauriainen, S., Karp, M., Chang, W. and Virta, M. (1997) Recombinant Luminescent Bacteria for Measuring Bio-available Arsenite and Antimonite. Applied and Environmental Microbiology, 63, 4456-4461.
[46] Stocker, J., Balluch, D., Gsell, M., Harms, H., Feliciano, J., Daunert, S., Malik, K.A. and van der Meer, J.R. (2003) Development of a Set of Simple Bacterial Biosensors for Quantitative and Rapid Measurements of Arsenite and Arsenate in Potable Water. Environmental Science and Technology, 37, 4743-4750.
[47] Sharma, P., Asad, S. and Ali, A. (2013) Bioluminescent Bioreporter for Assessment of Arsenic Contamination in Water Samples of India. Journal of Biosciences, 38, 251-258.
[48] Courties, C., Vaquer, A. and Troussellier, M. (1994) Smallest Eukaryotic Organism. Nature, 370, 255.
[49] Chrétiennot-Dinet, M.-J., Courties, C., Vaquer, A., Neveux, J., Claustre, H., Lautier, J. and Machado, M.-C. (1995) A New Marine Picoeucaryote: Ostreococcus tauri Gen. et sp. nov. (Chlorophyta, Prasinophyceæ). Phycologia, 34, 285- 292.
[50] Derelle, E., Ferraz, C., Rombauts, S., Rouze, P., Worden, A.Z., Robbens, S., Partensky, F., Degroeve, S., Echeynie, S., Cooke, R., Saeys, Y., Wuyts, J., Jabbari, K., Bowler, C., Panaud, O., Piegu, B., Ball, S.G., Ral, J.-P., Bouget, F.-Y., Piganeau, G., De Baets, B., Picard, A., Delseny, M., Demaille, J., Van de Peer, Y. and Moreau, H. (2006) Genome Analysis of the Smallest Free-Living Eukaryote Ostreococcus tauri Unveils Many Unique Features. Proceedings of the National Academy of Sciences of the United States of America, 103, 11647-11652.
[51] Palenik, B., Grimwood, J., Aerts, A., Rouze, P., Salamov, A., Putnam, N., Dupont, C., Jorgensen, R., Derelle, E., Rombauts, S., Zhou, K., Otillar, R., Merchant, S.S., Podell, S., Gaasterland, T., Napoli, C., Gendler, K., Manuell, A., Tai, V., Vallon, O., Piganeau, G., Jancek, S., Heijde, M., Jabbari, K., Bowler, C., Lohr, M., Robbens, S., Werner, G., Dubchak, I., Pazour, G.J., Ren, Q., Paulsen, I., Delwiche, C., Schmutz, J., Rokhsar, D., Van de Peer, Y., Moreau, H. and Grigoriev, I.V. (2007) The Tiny Eukaryote Ostreococcus Provides Genomic Insights into the Paradox of Plankton Speciation. Proceedings of the National Academy of Sciences of the United States of America, 104, 7705-7710.
[52] Moulager, M., Corellou, F., Vergé, V., Escande, M.-L. and Bouget, F.-Y. (2010) Integration of Light Signals by the Retinoblastoma Pathway in the Control of S Phase Entry in the Picophytoplanktonic Cell Ostreococcus. PLoS Genetics, 6, e1000957.
[53] Djouani-Tahri, E., Christie, J.M., Sanchez-Ferandin, S., Sanchez, F., Bouget, F.-Y. and Corellou, F. (2011) A Eukaryotic LOV-Histidine Kinase Regulates Circadian Clock Function in the Picoalga Ostreococcus. The Plant Journal, 65, 578-588.
[54] Sanchez-Ferandin, S., Leroy, F., Bouget, F.-Y. and Joux, F. (2013) A New, Sensitive Marine Microalgal Recombinant Biosensor Using Luminescence Monitoring for the Toxicity Testing of Antifouling Biocides. Applied and Environmental Microbiology, 79, 631.
[55] Gatidou, G. and Thomaidis, N. (2007) Evaluation of Single and Joint Toxic Effects of Two Antifouling Biocides, Their Main Metabolites and Copper Using Phytoplankton Bioassays. Aquatic Toxicology, 85, 184-191.
[56] Devilla, R.A., Brown, M.T., Donkin, M. and Tarran, G.A. (2005) Impact of Antifouling Booster Biocides on Single Microalgal Species and on a Natural Marine Phytoplankton Community. Marine Ecology Progress Series, 286, 1-12.
[57] Bonnet, J.-L., Bonnemoy, F., Dusser, M. and Bohatier, J. (2007) Assessment of the Potential Toxicity of Herbicides and Their Degradation Products to Nontarget Cells Using Two Microorganisms, the Bacteria Vibrio fischeri and the Ciliate Tetrahymena pyriformis. Environmental Toxicology, 22, 78-91.
[58] Fernández-Alba, A., Hernando, M., Piedra, L. and Chisti, Y. (2002) Toxicity Evaluation of Single and Mixed Antifouling Biocides Measured with Acute Toxicity Bioassays. Analytica Chimica Acta, 456, 303-312.
[59] Gambardella, C., Gallus, L., Gatti, A.M., Faimali, M., Carbone, S., Antisari, L.V., Falugi, C. and Ferrando, S. (2014) Toxicity and Transfer of Metal Oxide Nanoparticles from Microalgae to Sea Urchin Larvae. Chemistry and Ecology, 30, 308-316.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.