Share This Article:

Economic Load Dispatch Based on Efficient Population Utilization Strategy for Particle Swarm Optimization

Abstract Full-Text HTML XML Download Download as PDF (Size:505KB) PP. 367-373
DOI: 10.4236/ijcns.2015.89035    1,925 Downloads   2,322 Views   Citations

ABSTRACT

In this paper, the efficient population utilization strategy for particle swarm optimization (EPUSPSO) is proposed to solve the economic load dispatch (ELD) problem of power system. This algorithm improves the accuracy and the speed of its convergence by changing the number of particles effectively, and improving the velocity equation and position equation. In order to verify the effectiveness of the algorithm, this algorithm is tested in three different ELD cases of power system include IEEE 3-unit case, 13-unit case, and 40-unit case, and the obtained results are compared with those obtained from other algorithms using the same system parameters. The compared results show that the algorithm can find the optimal solution effectively and accurately, and avoid falling into the local optimal problem; meanwhile, faster speed can be ensured in the case.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Wu, L. , Li, H. , Wu, Z. and Wu, C. (2015) Economic Load Dispatch Based on Efficient Population Utilization Strategy for Particle Swarm Optimization. International Journal of Communications, Network and System Sciences, 8, 367-373. doi: 10.4236/ijcns.2015.89035.

References

[1] David, C.W. and Gerald, B.S. (1993) Genetic Algorithm Solution of Economic Dispatch with Valve Point Loading. IEEE Transactions on Power Systems, 8, 1325-1332.
http://dx.doi.org/10.1109/59.260861
[2] Wheimin, L., Fusheng, C. and Mingtong, T. (2001) Non-Convex Economic Dispatch by Integrated Artificial Intelligence. IEEE Transactions on Power Systems, 16, 307-311.
http://dx.doi.org/10.1109/59.918303
[3] Hou, Y.H., Lu, L.J., Xiong, X.Y., et al. (2004) Application of Generalized Ant Colony Optimization Algorithm Integrated with Particle Swarm Optimization Algorithm in Economic Dispatch of Power Systems. Power System Technology, 28, 34-38. (In Chinese)
[4] Ross, D.W. and Kim, S. (1980) Dynamic Economic Dispatch of Generation. IEEE Transactions on PAS, 99, 2060-2068.
[5] Rabin, A.J., Alun, H.C. and Brian, J.C. (2000) A Homogenous Linear Programming Algorithm for the Security Constrained Economic Dispatch Problem. IEEE Transactions on Power Systems, 15, 930-936.
http://dx.doi.org/10.1109/59.871715
[6] Zhang, X.W. and Li, Y.J. (2006) Self-Adjusted Particle Swarm Optimization Algorithm Based Economic Load Dispatch of Power System. Power System Technology, 30, 8-13. (In Chinese)
[7] Xiu, C.B. and Lu, L.F. (2010) Chaos Optimization Algorithm and Its Application in Economic Load Dispatch on Power System. Power System Protection and Control, 38, 109-112. (In Chinese)
[8] Kennedy, J. and Eberhart, R.C. (1995) A New Optimizer Using Particle Swarm. Proceeding of the 6th International Symposium on Micro Machine and Human Science, Nagoya, 4-6 October 1995, 39-43.
[9] Shengta, H., Tsungying, S., Liu, C.C. and Tsai, S.J. (2009) Efficient Population Utilization Strategy for Particle Swarm Optimizer. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 39, 444-456.
[10] Sinha, N., Chakrabarti, R. and Chattopadhyay, P.K. (2003) Evolutionary Programming Techniques for Economic Load Dispatch. IEEE Transactions on Evolutionary Computation, 7, 83-94.
http://dx.doi.org/10.1109/TEVC.2002.806788
[11] Li, X.B. and Zhu, Q.J. (2010) Application of Improved Particle Swarm Optimization Algorithm to Multi-Objective Reactive Power Optimization. Transactions of China Electrotechnical Society, 25, 137-143. (In Chinese)
[12] Yao, Y.H., Wang, Z.P., Guo, K.Y., et al. (2014) Distribution Network Service Restoration Using a Multi-Objective Binary Particle Swarm Optimization Based on E-Dominance. Power System Protection and Control, 42, 76-81. (In Chinese)
[13] Ling, S.H., Lam, H.K., Leung, F.H.F. and Lee, Y.S. (2003) Improved Genetic Algorithm for Economic Load Dispatch with Valve-Point Loadings. The 29 Annual Conference of the IEEE Industrial Electronics Society, 1, 442-447.
[14] Park, J.-B., Lee, K.-S., Shin, J.-R. and Lee, K.Y. (2003) Economic Load Dispatch for Non-Smooth Cost Functions Using Particle Swarm Optimization. 2003 IEEE Power Engineering Society General Meeting, 2, 938-943.
[15] Yorino, N., Hafiz, H.M., Sasaki, Y. and Zoka, Y. (2012) High-Speed Real-Time Dynamic Economic Load Dispatch. IEEE Transactions on Power Systems, 27, 621-630.
http://dx.doi.org/10.1109/TPWRS.2011.2169285

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.