The “Two Camels” of Koussa: A Massive Ferrous Meteorite in Mayo Binka (North-West Region in Cameroon)

DOI: 10.4236/ojg.2015.59057   PDF   HTML   XML   2,823 Downloads   3,404 Views  


At Koussa in Mayo Binka, a hundred kilometers northeasterly from the town of Bamenda, the Capital of the North-West Region in Cameroon, an enormous block of native iron of several tons in mass is found. The observation of the Southern view of this block let anyone see a configuration which surprisingly recalls two camels in an attitude that these animals generally adopt when they are at rest. This strong resemblance with the attitude of these animals in rest has led the local populations in identifying this enormous metallic block with the name of “the two camels’ couple” or simply stills “the two camels”. The test conducted with the acid let the Neumann figures be revealed the Neumann figures which confirm this metallic block as being a ferrous meteorite or a siderite of the Hexaedrites class.

Share and Cite:

Njom, B. , Tiolo, A. , Onana, J. , Bayi, Y. , Ibohn, A. , Bassong, S. , Ateba, M. , Boukar, M. , Ango, T. , Ngoute, J. , Koumedjalla, B. and Ekodeck, G. (2015) The “Two Camels” of Koussa: A Massive Ferrous Meteorite in Mayo Binka (North-West Region in Cameroon). Open Journal of Geology, 5, 649-654. doi: 10.4236/ojg.2015.59057.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Alvarez, L.W., Alvarez, W., Asaro, F. and Michel, H.V. (1980) Extraterrestrial Cause for the Cretaceous-Tertiary Extinction. Science, 208, 1095-1108.
[2] Govindaraju, K. and Mevelle, G. (1987) Fully Automated Dissolution and Separation Methods for Inductively Coupled Plasma Atomic Emission Spectrometry Rock Analysis. Application to the Determination of Rare Earth Elements. Journal of Analytical Atomic Spectrometry, 2, 615-621.
[3] Carion, A. (1993) Les météorites et leurs impacts. Armand Colin, France, 154 p.
[4] Allègre, C. (1982) Les premiers jours de la Terre. In Le système solaire, Belin, 284 p.
[5] Combes, M.-A. (2007) La Terre bombardée. 442 p.
[6] Marcelin, M. (1996) Ciel et Astronomie. Hachette, France, 211 p.
[7] Bontognali, T.R.R., Fischer, W.W. and Follmi, K.B. (2013) Siliciclastic Associated Banded Iron Formation from the 3.2 Ga Moodies Group Barberton Greenstone Belt, South Africa. Precambrian Research, 226, 116-124.
[8] Cannon, W.F., LaBerge, G.L., Klasner, J.S. and Schulz, K.J. (2007) The Gogebic Iron Range—A Sample of the Northern Margin of the Penokean Fold and Thrust Belt: U.S. Geological Survey Professional Paper 1730, 44 p.
[9] Vorontsov-Vel’yaminov, B.A. (1985) Essays about the Universe. Mir, Moscow, 326 p.
[10] Greeley, R. (1987) Planetary Landscapes. Allen & Unwin, UK, 275 p.
[11] Greeley, R., Flink, J., Gault, D.E., Snyder, D.B., Guest, J.E. and Schultz, P.H. (1980) Impact Cratreing in Viscous Targets: Laboratory Experiments. Proceedings of the 11th Lunar and Planetary Science Conference, Houston, 17-21 March 1980, 2075-2097.
[12] Reeves, H. (1980) Patience dans l’azur. L’évolution cosmique. Seuil, 251 p.
[13] Reeves, H. (2008) Poussières d’étoiles. Seuil, 448 p.
[14] Krauskopf, K.B. and Beiser, A. (2006) The Physical Universe. McGraw-Hill, Boston, 706 p.
[15] Melosh, H.J. (1989) Impact Cratering: A Geologic Process. Oxford University Press, New York, 254 p.
[16] Melosh, H.J. and Collins, G.S. (2005) Meteor Crater Formed by Low Velocity Impact. Nature, 434, 157.
[17] Huffman, A.R. and Reimold, W.U. (1996) Experimental Constraints on Shock Induced Microstructures in Naturally Deformed Silicates. Tectonophysics, 256, 165-217.
[18] French, B.M. (1998) Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. LPI Contribution No. 954, 111 p.
[19] Dence, M.R. (1972) The Nature and Significance of Terrestrial Impact Structures. Proceedings of the 24th International Geological Congress, Montreal, 21-30 August 1972, 77-89.
[20] Stoffler, D. and Langenhorst, F. (1994) Shock Metamorphism of Quartz in Nature and Experiment: I Basic Observation and Theory. Meteoritics, 29, 155-181.
[21] Gault, D.E., Quaide, W.L. and Oberbeck, V.R. (1968) Impact Cratering Mechanics and Structures. In: French, B.M. and Short, N.M., Eds., Shock Metamorphism of Natural Materials, Mono Book, Baltimore, 87-99.
[22] Koeberl, C. (1993) Chicxulub Crater, Yucatan: Tektites, Impact Glasses, and the Geochemistry of Target Rocks and Breccias. Geology, 21, 211-214.<0211:CCYTIG>2.3.CO;2
[23] Koeberl, C. (1997) Impact Cratering: The Mineralogical and Geochemical Evidence. In: Johnson, K. and Campbell, J., Eds., Proceedings “The Ames Structure and Similar Structure”, Oklahoma Geological Survey, Norman, OK, 30-54.
[24] Rankine, W.J.M. (1870) On the Thermodynamic Theory of Waves of Finite Disturbance. Transactions of the Royal Society, 160, 277-288.
[25] Grieve, R.A.F., Langenhorst, F. and St?ffler, D. (1996) Shock Metamorphism of Quartz in Nature and Experiment: II Significance in Geoscience. Meteoritics & Planetary Science, 31, 6-35.
[26] Stokes, G.G. (1848) On a Difficulty in the Theory of Sound. Philosophical Magazine, 33, 349-356.
[27] Tattevin, H. (1987) Déformation et transformation de phase induites par ondes de choc dans les silicates. Mémoires et Documents du Centre d’Etude structurale des Socles. No. 13, Université de Rennes I, Rennes, 150 p.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.