Fine Structure Calculations of Atomic Data for Ar XVI

DOI: 10.4236/jmp.2015.611163   PDF   HTML   XML   5,163 Downloads   5,521 Views   Citations


Fine structure energy levels, wavelengths, log gf and allowed transition probabilities (E1) have been calculated for Lithium-like Ar XVI. The optimized electrostatic parameters by a least square approach, have been used in the calculation to include the configuration interaction and relativistic effects. A total number of 69 Ar XVI levels having total angular momenta, 1/2 ≤ J ≤ 9/2 of even and odd parities, orbital angular momenta 2 ≤ l ≤ 4, with 546 E1 transitions for 6 ≤ n ≤ 10 are considered using the relativistic effect in the Breit-Pauli method, where n is the principal quantum number. A comparison is made with the available results in literature.

Share and Cite:

Refaie, A. (2015) Fine Structure Calculations of Atomic Data for Ar XVI. Journal of Modern Physics, 6, 1609-1630. doi: 10.4236/jmp.2015.611163.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Schlesser, S., Boucard, S., Covita, D.S., dos Santos, J.M.F., Fuhrmann, H., Gotta, D., Gruber, A., Hennebach, M., Hirtl, A., Indelicato, P., Le Bigot, E.-O., Simons, L.M., Stingelin, L., Trassinelli, M., Veloso, J.F.C.A., Wasser, A. and Zmeskal, J. (2013) Physical Review A, 88, Article ID: 022503.
[2] Natarajan, L. (2013) Physical Review A, 88, Article ID: 052522.
[3] Guerra, M., Amaro, P., Szabo, C.I., Gumberidze, A., Indelicato, P. and Santos, J.P. (2013) Journal of Physics B, 46, Article ID: 065701.
[4] Saloman, E.B. (2010) Journal of Physical and Chemical Reference Data, 39, Article ID: 033101.
[5] Lepson, J.K., Beiersdorfer, P., Behar, E. and Kahn, S.M. (2003) The Astrophysical Journal, 590, 604-617.
[6] Aggarwal, K.M. and Keenan, F.P. (2013) Atomic Data and Nuclear Data Tables, 99, 156-248.
[7] Lowe, J.A., Chantler, C.T. and Grant, I.P. (2013) Radiation Physics and Chemistry, 85, 118-123.
[8] Yerokhin, V.A. and Surzhykov, A. (2012) Physical Review A, 86, Article ID: 042507.
[9] Liu, S.-Z., Xie, L.-Y., Ding, X.-B. and Dong, C.-Z. (2012) Acta Physica Sinica, 61, Article ID: 093106.
[10] Natarajan, L., Natarajan, A. and Kadrekar, R. (2010) Physical Review A, 82, Article ID: 062514.
[11] Nahar, S.N. (2002) Astronomy & Astrophysics, 389, 716-728.
[12] Hu, M.-H. and Wang, Z.-W. (2009) Chinese Physics B, 18, 2244-2249.
[13] Zhu, J.J., Gou, B.C. and Wang, Y.D. (2008) Journal of Physics B, 41, Article ID: 065702.
[14] Liang, G.Y. and Badnell, N.R. (2011) Astronomy & Astrophysics, 528, A69.
[15] Sobel’man, I.I. (1979) Introduction to the Theory of Atomic Spectra. International Series of Monographs in National Philosophy, Pergamon Press, Oxford.
[16] Fischer, C.F., Brage, T. and Jönsson, P. (2000) Computational Atomic Structure. Institute of Physics Publishing, Bristol and Philadelphia.
[17] Cowan, R.D. (1981) The Theory of Atomic Structure and Spectra. University of California Press, Berkeley.
[18] Sobel’man, I.I. (1979) Atomic Spectra and Radiative Transitions. Springer, Berlin.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.