Share This Article:

Field Electron-Emission from a-CNx:H Films Formed on Al Films Using Supermagnetron Plasma CVD

Abstract Full-Text HTML XML Download Download as PDF (Size:1165KB) PP. 1602-1608
DOI: 10.4236/jmp.2015.611162    2,636 Downloads   2,921 Views   Citations

ABSTRACT

Hydrogenated amorphous carbon nitride (a-CNx:H) films were formed on p-Si, Al films deposited on n-Si (Al/n-Si) and glass (SiO2) (Al/glass) substrates, using pulsed rf supermagnetron plasma chemical vapor deposition (CVD) with N2/i-C4H10 mixed gases. The rf powers (13.56 MHz) of both the upper and lower electrodes were modulated by a 2.5-kHz pulse at a duty ratio of 12.5%. N2 gas concentration was controlled at 70%. The optical band gap of a-CNx:H films was about 0.75 eV. The a-CNx:H films deposited on substrates of p-Si, Al/n-Si and Al/glass showed low threshold emission electric fields (ETH) of 10, 13 and 12 V/μm, respectively. The a-CNx:H film deposited on low-cost Al film (Al/glass) showed a sufficiently low ETH of 12 V/μm, eliminating the need for high-cost p-Si substrates.

Cite this paper

Kinoshita, H. , Suzuki, S. , Taguchi, R. and Takeuchi, H. (2015) Field Electron-Emission from a-CNx:H Films Formed on Al Films Using Supermagnetron Plasma CVD. Journal of Modern Physics, 6, 1602-1608. doi: 10.4236/jmp.2015.611162.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Jung, J.H., Ju, B.K., Kim, H., Oh, M.H., Chung, S.J. and Jang, J. (1998) Journal of Vacuum Science & Technology B, 16, 705-709.
http://dx.doi.org/10.1116/1.589886
[2] Lin, C.M., Chang, S.J., Yokoyama, M., Chuang, F.Y., Tsai, C.H., Wang, W.C. and Lin, I.N. (1999) Japanese Journal of Applied Physics, 38, 890-893.
http://dx.doi.org/10.1143/JJAP.38.890
[3] Xu, N.S., Wu, Z.S., Deng, S.Z. and Chen, J. (2001) Journal of Vacuum Science & Technology B, 19, 1370-1372.
http://dx.doi.org/10.1116/1.1387451
[4] Knapp, W. and Schleussner, D. (2003) Vacuum, 69, 333-338.
http://dx.doi.org/10.1016/S0042-207X(02)00354-8
[5] Lettington, A.H. (1993) Philosophical Transactions of the Royal Society of London. Series A, 342, 287-296.
http://dx.doi.org/10.1098/rsta.1993.0022
[6] Küttel, O.M., Groening, O., Emmenegger, C. and Schlapbach, L. (1998) Applied Physics Letters, 73, 2113-2115.
http://dx.doi.org/10.1063/1.122395
[7] Semet, V., Binh, V.T., Vincent, P., Guillot, D., Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., Legagneux, P. and Pribat, D. (2002) Applied Physics Letters, 81, 343-345.
http://dx.doi.org/10.1063/1.1489084
[8] Kinoshita, H., Ikuta, R. and Murakami, S. (2004) Journal of Vacuum Science & Technology A, 22, 1857-1861.
http://dx.doi.org/10.1116/1.1756878
[9] Amaratunga, G.A.J. and Silva, S.R.P. (1996) Applied Physics Letters, 68, 2529-2531.
http://dx.doi.org/10.1063/1.116173
[10] Cui, J.B., Robertson, J. and Milne, W.I. (2001) Journal of Applied Physics, 89, 3490.
http://dx.doi.org/10.1063/1.1350626
[11] Uemura, Y., Murai, S., Koide, Y. and Murakami, M. (2002) Diamond and Related Materials, 11, 1429-1435.
http://dx.doi.org/10.1016/S0925-9635(02)00042-0
[12] Ilie, A., Ferrari, A.C., Yagi, T., Rodil, S.E., Robertson, J., Barborini, E. and Milani, P. (2001) Journal of Applied Physics, 90, 2024-2032.
http://dx.doi.org/10.1063/1.1381001
[13] Panwar, O.S., Kumar, S., Rajput, S.S., Sharma, R. and Bhattacharyya, R. (2004) Vacuum, 72, 183-192.
http://dx.doi.org/10.1016/S0042-207X(03)00142-8
[14] Kinoshita, H. and Otaka, N. (2002) Journal of Vacuum Science & Technology A, 20, 1481-1485.
http://dx.doi.org/10.1116/1.1488946
[15] Kinoshita, H. and Murakami, T. (2002) Journal of Vacuum Science & Technology A, 20, 403-407.
http://dx.doi.org/10.1116/1.1446446
[16] Kinoshita, H., Ikuta, R. and Yamaguchi, T. (2008) Thin Solid Films, 516, 4441-4445.
http://dx.doi.org/10.1016/j.tsf.2007.10.017
[17] Kinoshita, H., Ninomiya, Y. and Kato, T. (2013) Japanese Journal of Applied Physics, 52, Article ID: 116201.
http://dx.doi.org/10.7567/JJAP.52.116201
[18] Stenzel, O., Vogel, M., Pönitz, S., Petrich, R., Wallendorf, T., Borczyskownski, C.V., Rozploch, F., Krasilnik, Z. and Kalugin, N. (1993) Physica Status Solidi, 140, 179-188.
http://dx.doi.org/10.1002/pssa.2211400115
[19] Wood, P., Wydeven, T. and Tsuji, O. (1995) Thin Solid Films, 258, 151-158.
http://dx.doi.org/10.1016/0040-6090(94)06366-4
[20] Carey, J.D., Forrest, R.D., Poa, C.H. and Silva, S.R.P. (2003) Journal of Vacuum Science & Technology B, 21, 1633-1639.
http://dx.doi.org/10.1116/1.1593642
[21] Kinoshita, H., Yamashita, M. and Yamaguchi, T. (2006) Japanese Journal of Applied Physics, 45, 8401-8405.
http://dx.doi.org/10.1143/JJAP.45.8401
[22] Kinoshita, H., Kubota, M. and Ohno, G. (2010) Thin Solid Films, 518, 3502-3505.
http://dx.doi.org/10.1016/j.tsf.2009.11.051
[23] Kinoshita, H. and Yagi, S. (2014) Journal of Physics: Conference Series, 518, Article ID: 012004.
http://dx.doi.org/10.1088/1742-6596/518/1/012004
[24] Tauc, J. (1974) Amorphous, Liquid Semiconductors. Plenum Press, New York, 159.
http://dx.doi.org/10.1007/978-1-4615-8705-7_4
[25] Yamada, H., Tsuji, O. and Wood, P. (1995) Thin Solid Films, 270, 220-225.
http://dx.doi.org/10.1016/0040-6090(95)06892-9
[26] Kumar, S., Dixit, P.N., Sarangi, D. and Bhattacharyya, R. (1999) Journal of Applied Physics, 85, 3866-3876.
http://dx.doi.org/10.1063/1.369758
[27] Kinoshita, H., Ikuta, R. and Sakurai, K. (2005) Applied Surface Science, 244, 314-317.
http://dx.doi.org/10.1016/j.apsusc.2004.10.083
[28] Mutsukura, N. and Daigo, Y. (2003) Diamond and Related Materials, 12, 2057-2060.
http://dx.doi.org/10.1016/S0925-9635(03)00219-X
[29] Kinoshita, H., Kubota, M. and Ohno, G. (2012) Thin Solid Films, 523, 52-54.
http://dx.doi.org/10.1016/j.tsf.2012.06.010
[30] Kinoshita, H. and Yamashita, M. (2007) Thin Solid Films, 515, 5142-5146.
http://dx.doi.org/10.1016/j.tsf.2006.10.055

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.