[1]
|
Serpone, N., Dondi, D. and Albini, A. (2007) Inorganic and Organic UV Filters: Their Role and Efficacy in Sunscreens and Suncare Products. Inorganica Chimica Acta, 360, 794-802. http://dx.doi.org/10.1016/j.ica.2005.12.057
|
[2]
|
Dutta, A., Das, D., Grilli, M., Di, B.E., Traversa, E. and Chakravorty, D. (2003) Preparation of Solgel Nano-Composites Containing Copper Oxide and Their Gas Sensing Properties. Journal of Sol-Gel Science and Technology, 26, 1085-1089. http://dx.doi.org/10.1023/A:1020706707243
|
[3]
|
Prinz, G.A. (1999) Magnetoelectronics. Science, 283, 330.
|
[4]
|
Kobe, S., Drazic, G., McGuiness, P.J. and Strazisar, J. (2001) The Influence of the Magnetic Field on the Crystallisation Form of Calcium Carbonate and the Testing of a Magnetic Water-Treatment Device. Journal of Magnetism and Magnetic Materials, 236, 71-76. http://dx.doi.org/10.1016/S0304-8853(01)00432-2
|
[5]
|
Jiang, L.C. and Zhang, W.D. (2010) A Highly Sensitive Nonenzymatic Glucose Sensor Based on CuO Nanoparticles-Modified Carbon Nanotube Electrode. Biosensors and Bioelectronics, 25, 1402-1407. http://dx.doi.org/10.1016/j.bios.2009.10.038
|
[6]
|
Song, M.J., Hwang, S.W. and Whang, D. (2010) Non-Enzymatic Electrochemical CuO Nanoflowers Sensor for Hydrogen Peroxide Detection. Talanta, 80, 1648-1652. http://dx.doi.org/10.1016/j.talanta.2009.09.061
|
[7]
|
Xia, T., Kovochich, M., Liong, M., Madler, L., Gilbert, B., Shi, H., Yeh, J.I., Zink, J.I. and Nel, A.E. (2010) Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties. ACS Nano, 2, 2121-2134. http://dx.doi.org/10.1021/nn800511k
|
[8]
|
Maurer-Jones, M.A., Lin, Y. and Haynes, C.L. (2010) Functional Assessment of Metal Oxide Nanoparticle Toxicity in Immune Cells. ACS Nano, 4, 3363-3373. http://dx.doi.org/10.1021/nn9018834
|
[9]
|
Wang, Z.Y., Li, N., Zhao, J., White, J.C., Qu, P. and Xing, B.S. (2012) CuO Nanoparticle Interaction with Human Epithelial Cells: Cellular Uptake, Location, Export, and Genotoxicity. Chemical Research in Toxicology, 25, 1512-1521. http://dx.doi.org/10.1021/tx3002093
|
[10]
|
Fahmy, B. and Cormier, S.A. (2009) Copper Oxide Nanoparticles Induce Oxidative Stress and Cytotoxicity in Airway Epithelial Cells. Toxicol in Vitro, 23, 1365-1371. http://dx.doi.org/10.1016/j.tiv.2009.08.005
|
[11]
|
Ahamed, M., Siddiqui, M.A., Akhtar, M.J., Ahmad, I., Pant, A.B. and Alhadlaq, H.A. (2010) Genotoxic Potential of Copper Oxide Nanoparticles in Human Lung Epithelial Cells. Biochemical and Biophysical Research Communications, 396, 578-583. http://dx.doi.org/10.1016/j.bbrc.2010.04.156
|
[12]
|
Sun, J., Wang, S.C., Zhao, D., Hun, F.H., Weng, L. and Liu, H. (2011) Cytotoxicity, Permeability, and Inflammation of Metal Oxide Nanoparticles in Human Cardiac Microvascular Endothelial Cells: Cytotoxicity, Permeability, and Inflammation of Metal Oxide Nanoparticles. Cell Biology and Toxicology, 27, 333-342. http://dx.doi.org/10.1007/s10565-011-9191-9
|
[13]
|
Xu, J., Li, Z., Xu, P., Xiao, L. and Yang, Z. (2012) Nanosized Copper Oxide Induces Apoptosis through Oxidative Stress in Podocytes. Archives of Toxicology, 87, 1067-1073. http://dx.doi.org/10.1007/s00204-012-0925-0
|
[14]
|
Perreault, F., Melegari, S.P., Costa, C.H., Rossetto, A.-F., Popovic, R. and Matias, W.G. (2012) Genotoxic Effects of Copper Oxide Nanoparticles in Neuro 2A Cell Cultures. Science of the Total Environment, 441, 117-124. http://dx.doi.org/10.1016/j.scitotenv.2012.09.065
|
[15]
|
Nishimori, H., Kondoh, M., Isoda, K., Tsunoda, S., Tsutsumi, Y. and Yagi, K. (2009) Silica Nanoparticles as Hepatotoxicants. European Journal of Pharmaceutics and Biopharmaceutics, 72, 496-501. http://dx.doi.org/10.1016/j.ejpb.2009.02.005
|
[16]
|
Xie, G., Sun, J., Zhong, G., Shi, L. and Zhang, D. (2010) Biodistribution and Toxicity of Intravenously Administered Silica Nanoparticles in Mice. Archives of Toxicology, 84, 183-190. http://dx.doi.org/10.1007/s00204-009-0488-x
|
[17]
|
Wang, Y., Aker, W.G., Hwang, H.M., Yedjou, C.G., Yu, H. and Tchounwou, P.B. (2011) A Study of the Mechanism of in Vitro Cytotoxicity of Metal Oxide Nanoparticles Using Catfish Primary Hepatocytes and Human HepG2 Cells. Science of the Total Environment, 409, 4753-4762. http://dx.doi.org/10.1016/j.scitotenv.2011.07.039
|
[18]
|
Piret, J.P., Jacques, D., Audinot, J.N., Mejia, J., Boilan, E. and Noel, F. (2012) Copper (II) Oxide Nanoparticles Penetrate into HepG2 Cells, Exert Cytotoxicity via Oxidativestress and Induce Pro-Inflammatory Response. Nanoscale, 4, 7168-7184. http://dx.doi.org/10.1039/c2nr31785k
|
[19]
|
Siddiqui, M.A., Alhadlaq, H.A., Ahmad, J., Al-Khedhairy, A.A., Musarrat, J. and Ahamed, M. (2013) Copper Oxide Nanoparticles Induced MitochondriaMediated Apoptosis in Human Hepatocarcinoma Cells. PLoS ONE, 8, e69534. http://dx.doi.org/10.1371/journal.pone.0069534
|
[20]
|
Wang, Z.Y., Li, J., Zhao, J. and Xing, B.S. (2011) Toxicity and Internalization of CuO Nanoparticles to Prokaryotic Alga Microcystis Aeruginosa as Affected by Dissolved Organic Matter. Environmental Science & Technology, 45, 6032-6040. http://dx.doi.org/10.1021/es2010573
|
[21]
|
Gunawan, C., Teoh, W.Y., Marquis, C.P. and Amal, R. (2011) Cytotoxic Origin of Copper(II) Oxide Nanoparticles: Comparative Studies with Micron-Sized Particles, Leachate, and Metal Salts. ACS Nano, 5, 7214-7225. http://dx.doi.org/10.1021/nn2020248
|
[22]
|
Zhao, J., Wang, Z.Y., Liu, X.Y., Xie, X.Y., Zhang, K. and Xing, B.S. (2011) Distribution of CuO Nanoparticles in Juvenile Carp (Cyprinus carpio) and Their Potential Toxicity. Journal of Hazardous Materials, 197, 304-310. http://dx.doi.org/10.1016/j.jhazmat.2011.09.094
|
[23]
|
Karlsson, H.L., Cronholm, P., Gustafsson, J. and Moller, L. (2008) Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes. Chemical Research in Toxicology, 21, 1726-1732. http://dx.doi.org/10.1021/tx800064j
|
[24]
|
Siddiqui, M.A., Ahamed, M., Ahmad, J., Khan, M.A.M., Musarrat, J., Al-Khedhairy, A.A., et al. (2012) Nickel Oxide Nanoparticles Induce Cytotoxicity, Oxidative Stress and Apoptosis in Cultured Human Cells That Is Abrogated by the Dietary Antioxidant Curcumin. Food and Chemical Toxicology, 50, 641-647. http://dx.doi.org/10.1016/j.fct.2012.01.017
|
[25]
|
Nel, A., Xia, T., Madler, L. and Li, N. (2006) Toxic Potential of Materials at the Nanolevel. Science, 311, 622-627. http://dx.doi.org/10.1126/science.1114397
|
[26]
|
Asharani, P.V., Mun, G.K., Hande, M.P. and Valiyaveettil, S. (2009) Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano, 3, 279-290. http://dx.doi.org/10.1021/nn800596w
|
[27]
|
Ahamed, M., Akhtar, M.J., Raja, M., Ahmad, I., Siddiqui, M.K.J., AlSalhi, M.S., et al. (2011) Zinc Oxide Nanorod Induced Apoptosis via p53, bax/bcl-2 and Survivin Pathways in Human Lung Cancer Cells: Role of Oxidative Stress. Nanomedicine: Nanotechnology, Biology and Medicine, 7, 904-913. http://dx.doi.org/10.1016/j.nano.2011.04.011
|
[28]
|
Trachootham, D., Alexandre, J. and Huang, P. (2009) Targeting Cancer Cells by ROS-Mediated Mechanisms: A Radical Therapeutic Approach? Nature Reviews Drug Discovery, 8, 579-591. http://dx.doi.org/10.1038/nrd2803
|
[29]
|
Benz, C.C. and Yau, C. (2008) Ageing, Oxidative Stress and Cancer: Paradigms in Parallax. Nature Reviews Cancer, 8, 875-879. http://dx.doi.org/10.1038/nrc2522
|
[30]
|
Jomova, K. and Valko, M. (2011) Advances in Metal-Induced Oxidative Stress and Human Disease. Toxicology, 283, 65-87. http://dx.doi.org/10.1016/j.tox.2011.03.001
|
[31]
|
Boonstra, J. and Post, J.A. (2004) Molecular Events Associated with Reactive Oxygen Species and Cell Cycle Progression in Mammalian Cells. Gene, 337, 1-13. http://dx.doi.org/10.1016/j.gene.2004.04.032
|