[1]
|
Adewuri, Y.G. (2001) Sonochemistry: Environmental Science and Engineering Applications. Industrial and Engineering Chemistry Research, 40, 4681-4175. http://dx.doi.org/10.1021/ie010096l
|
[2]
|
Park, B., Shin, D., Cho, E. and Khim, J. (2012) Effect of Ultrasonic Frequency and Power Density for Degradation of Dichloroacetonitrile by Sonolytic Ozonation. Japanese Journal of Applied Physics, 51, Article ID: 07GD07.
http://dx.doi.org/10.7567/JJAP.51.07GD07
|
[3]
|
Xu, Z., Mochida, K., Naito, T. and Yasuda, K. (2012) Effects of Operational Conditions on 1,4-Dioxane Degradationby Combined Use of Ultrasound and Ozone Microbubbles. Japanese Journal of Applied Physics, 51, Article ID: 07GD08. http://dx.doi.org/10.1143/JJAP.51.07GD08
|
[4]
|
Cho, E., Park, B., Na, S. and Khim, J. (2012) Effects of Power Density and TiO2 Dose in the Sonocatalytic Degradationof Diethyl Phthalate Using High Frequency. Japanese Journal of Applied Physics, 51, Article ID: 07GD09.
http://dx.doi.org/10.1143/JJAP.51.07GD09
|
[5]
|
Park, B., Cho, E., Park, H. and Khim, J. (2011) Sonophotocatalytic Destruction of Chloroform: Comparison of Processes and Synergistic Effects. Japanese Journal of Applied Physics, 50, Article ID: 07HE10.
|
[6]
|
Naruke, Y. and Harada, H. (2011) Sonophotocatalytic Sonolysis of Short-Chain Organic Dicarboxylic Acid Solutions, Japanese Journal of Applied Physics, 50, 07HE15. http://dx.doi.org/10.1143/JJAP.50.07HE15
|
[7]
|
Kobayashi, D., Sano, K., Takeuchi, Y. and Terasaka, K. (2011) Effect of Irradiation Distance on Degradation of Phenol Using Indirect Ultrasonic Irradiation Method. Ultrasonics Sonochemistry, 18, 1205-1210.
http://dx.doi.org/10.1016/j.ultsonch.2011.01.010
|
[8]
|
Kidak, R and Ince, N.H. (2006) Ultrasonic Destruction of Phenol and Substituted Phenols: A Review of Current Research. Ultrasonics Sonochemistry, 13, 195-199. http://dx.doi.org/10.1016/j.ultsonch.2005.11.004
|
[9]
|
Pétrier, C. and Francony, A. (1997) Ultrasonic Waste-Water Treatment: Incidence of Ultrasonic Frequency on the Rate of Phenol and Carbon Tetrachloride Degradation. Ultrasonics Sonochemistry, 4, 295-300.
http://dx.doi.org/10.1016/S1350-4177(97)00036-9
|
[10]
|
Berlan, J., Trabelsi, F., Delmas, H., Wilhelm, A.M. and Petrignani, J.F. (1994) Oxidative Degradation of Phenol in Aqueous Media Using Ultrasound. Ultrasonics Sonochemistry, 1, S97-S102.
http://dx.doi.org/10.1016/1350-4177(94)90005-1
|
[11]
|
Serpone, N., Terzian, R., Colarusso, P., Minero, C., Pelizzetti, E. and Hidaka, H. (1993) Sonochemical Oxidation of Phenol and Three of Its Intermediate Products in Aqueous Media: Catechol, Hydroquinone, and Benzoquinone. Kinetic and Mechanistic Aspects. Research on Chemical Intermediates, 18, 183-202.
http://dx.doi.org/10.1163/156856792X00281
|
[12]
|
Kobayashi, D., Honma, C., Matsumoto, H., Takahashi, T., Shimada, Y., Kuroda, C., Otake, K. and Shono, A. (2014) Effect of Ultrasonic Frequency and Initial Concentration on Degradation of Methylene Blue. Japanese Journal of Applied Physics, 53, 07KE03. http://dx.doi.org/10.7567/jjap.53.07ke03
|
[13]
|
Kobayashi, D., Honma, C., Matsumoto, H., Takahashi, T., Kuroda, C., Otake, K. and Shono, A. (2014) Kinetics Analysis for Development of a Rate Constant Estimation Model for Ultrasonic Degradation Reaction of Methylene Blue. Ultrasonics Sonochemistry, 21, 1489-1495. http://dx.doi.org/10.1016/j.ultsonch.2013.12.022
|
[14]
|
Kobayashi, D., Honma, C., Suzuki, A., Takahashi, T., Matsumoto, H., Kuroda, C., Otake, K. and Shono, A. (2012) Comparison of Ultrasonic Degradation Rates Constants of Methylene Blue at 22.8 kHz, 127 kHz, and 490 kHz. Ultrasonics Sonochemistry, 19, 745-749. http://dx.doi.org/10.1016/j.ultsonch.2012.01.004
|
[15]
|
Son, Y., Cho, E., Lim, M. and Khim, J. (2010) Effects of Salt and pH on Sonophotocatalytic Degradation of Azo Dye Reactive Black 5. Japanese Journal of Applied Physics, 49, 07HE05. http://dx.doi.org/10.1143/jjap.49.07he05
|
[16]
|
Merouani, S. Hamdaoui, O., Saoudi, F. and Chiha, M. (2010) Sonochemical Degradation of Rhodamine B in Aqueous Phase: Effects of Additives. Chemical Engineering Journal, 158, 550-557. http://dx.doi.org/10.1016/j.cej.2010.01.048
|
[17]
|
Inoue, M., Okada, F., Sakurai, A. and Sakakibara, M. (2006) A New Development of Dyestuffs Degradation System Using Ultrasound. Ultrasonics Sonochemistry, 13, 313-320. http://dx.doi.org/10.1016/j.ultsonch.2005.05.003
|
[18]
|
Okitsu, K., Iwasaki, K., Yobiko, Y., Bandow, H., Nishimura, R. and Maeda, Y. (2005) Sonochemical Degradation of Azo Dyes in Aqueous Solution: ANew Heterogeneous Kinetics Model Taking into Account the Local Concentration of OH Radicals and Azo Dyes, Ultrasonics Sonochemistry, 12, 255-262. http://dx.doi.org/10.1016/j.ultsonch.2004.01.038
|
[19]
|
Kubo, M., Matsuoka, K., Takahashi, A., Shibasaki-Kitakawa, N. and Yonemoto, T. (2005) Kinetics of Ultrasonic Degradation of Phenol in the Presence of TiO2 Particles. Ultrasonics Sonochemistry, 12, 263-269.
http://dx.doi.org/10.1016/j.ultsonch.2004.01.039
|
[20]
|
Sekiguchi, H. and Saita, Y. (2001) Effect of Alumina Particles on Sonolysis Degradation of Chlorobenzene in Aqueous Solution. Journal of Chemical Engineering of Japan, 34, 1045-1048. http://dx.doi.org/10.1252/jcej.34.1045
|
[21]
|
Honma, C., Kobayashi, D., Matsumoto, H., Takahashi, T., Kuroda, C., Otake, K. and Shono, A. (2013) Effect of Particle Addition on Degradation Rate of Methylene Blue in an Ultrasonic Field. Japanese Journal of Applied Physics, 52, 07HE11. http://dx.doi.org/10.7567/jjap.52.07he11
|
[22]
|
Contamine, R.F., Wilhelm, A.M., Berlan, J. and Delmas, H. (1995) Power Measurement in Sonochemistry. Ultrasonics Sonochemistry, 2, S43-S47. http://dx.doi.org/10.1016/1350-4177(94)00010-p
|
[23]
|
Lee, B.-N., Liaw, W.-D. and Lou, J.-C. (1999) Photocatalytic Decolorization of Methylene Blue in Aqueous TiO2 Suspension. Environmental Engineering Science, 16, 165-175. http://dx.doi.org/10.1089/ees.1999.16.165
|