Synthesis of Sulfated Cyclodextrin Amphiphiles with Liposomal Encapsulation Properties


A novel class of amphiphiles with sulfate groups at the C-6 position and palmitoyl groups at the C-2, 3 positions of α-, β-, and γ-cyclodextrin (CD) were efficiently synthesized. These compounds formed stable monolayers with high collapse pressures at the air-water interface. The mixed monolayer behaviors of the 6-O-sulfated CD amphiphiles (SO3-CDC16) in the presence of dipalmitoyl phosphatidylcholine (DPPC) and cholesterol were discussed using the surface pressure-molecular area (π-A) isotherms. The collapse pressures showed maxima at molar ratios of SO3-CDC16 lower than 10 mol%. A morphological analysis of the liposomes containing DPPC and 4 mol% SO3-CDC16 formed in PBS was carried out using transmission electron microscopy with negative staining, and vesicles with maximum diameters of 350-500 nm were observed. Moreover, the releasing ability of these liposomes was examined using a fluorescent compound, calcein. It was clearly shown that liposomes containing SO3-CDC16 could release encapsulated calcein more easily than liposomes consisting only of DPPC, and that the release rate depended on the phase transition temperature of the SO3-CDC16 included in the liposome membrane.

Share and Cite:

Furuike, T. , Nasu, K. and Tamura, H. (2015) Synthesis of Sulfated Cyclodextrin Amphiphiles with Liposomal Encapsulation Properties. Journal of Encapsulation and Adsorption Sciences, 5, 144-154. doi: 10.4236/jeas.2015.53012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Marcus, E.B. and Thorsteinn, L. (2007) Cyclodextrins as Pharmaceutical Solubilizers. Advanced Drug Delivery Reviews, 59, 645-666.
[2] Crini, G. (2015) A History of Cyclodextrins. Chemical Reviews, 114, 10940-10975.
[3] Szejtli, J. (1998) Introduction and General Overview of Cyclodextrin Chemistry. Chemical Reviews, 98, 1743-1753.
[4] Loftsson, T. and Brewster, M.E. (2011) Pharmaceutical Applications of Cyclodextrins: Effects on Drug Permeation through Biological Membranes. Journal of Pharmacy and Pharmacology, 63, 1119-1135.
[5] Kha, A., Forgo, P., Stine, K.J. and D’Souza, V.T. (1998) Methods for Selective Modifications of Cyclodextrins. Chemical Reviews, 98, 1977-1996.
[6] Zhang, L., Zhang, Z., Li, N., Wang, N., Wang, Y., Tang, S., Xu, L. and Ren, Y. (2013) Synthesis and Evaluation of a Novel β-Cyclodextrin Derivative for Oral Insulin Delivery and Absorption. International Journal of Biological Macromolecules, 61, 494-500.
[7] Duchêne, D., Wouessidjewe, D. and Ponchel, G. (1999) Cyclodextrins and Carrier Systems. Journal of Controlled Release, 62, 263-268.
[8] Kassab, R., Félix, C., Parrot-Lopez, H. and Bonaly, R. (1997) Synthesis of Cyclodextrin Derivatives Carrying Bio- Recognisable Saccharide Antennae. Tetrahedron Letters, 38, 7555-7558.
[9] Oritiz-Mellet, C., Benito, J.M., García-Fernández, J.M., Law, H., Chmurski, K., Defaye, J., O’Sullivan, M.L. and Caro, H.N. (1998) Cyclodextrin-Scaffolded Glycoclusters. Chemistry—A European Journal, 4, 2523-2531.<2523::AID-CHEM2523>3.0.CO;2-2
[10] Furuike, T., Aiba, S. and Nishimura, S.-I. (2000) A Highly Practical Synthesis of Cyclodextrin-Based Glycoclusters Having Enhanced Affinity with Lectins. Tetrahedron, 56, 9909-9915.
[11] Furuike, T., Sadamoto, R., Niikura, K., Monde, K., Sakairi, N. and Nishimura, S.-I. (2005) Chemical and Enzymatic Synthesis of Glycocluster Having Seven Sialyl Lewis X Arrays Using β-Cyclodextrin as a Key Scaffold Material. Tetrahedron, 61, 1737-1742.
[12] Roy, R., Hernández-Mateo, F. and Santoyo-González, F. (2000) Synthesis of Persialylated β-Cyclodextrins. Journal of Organic Chemistry, 65, 8743-8746.
[13] Ortega-Caballero, F., Giménez-Martinez, J.J. and Vargas-Berenguel, A. (2003) Diverse Motifs of Mannoside Clustering on a β-Cyclodextrin Core. Organic Letters, 5, 2389-2392.
[14] Muhanna, A.M.A., Ortiz-Salmerón, E., García-Fuentes, L., Giménez-Martinez, J.J. and Vargas-Berenguel, A. (2003) Synthesis of Peptide Dendrimers Based on a β-Cyclodextrin Core with Guest Binding Ability. Tetrahedron Letters, 44, 6125-6128.
[15] Mazzaglia, A., Angelini, N., Darcy, R., Donohue, R., Lombardo, D., Micali, N., Sciortino, M.T., Villari, V. and Scolaro, L.M. (2003) Novel Heterotopic Colloids of Anionic Porphyrins Entangled in Cationic Amphiphilic Cyclodextrins: Spectroscopic Investigation and Intracellular Delivery. Chemistry—A European Journal, 9, 5762-5769.
[16] McCarthy, J., O’Neill, M.J., Bourre, L., Walsh, D., Quinlan, A., Hurley, G., Ogier, J., Shanahan, F., Melgar, S., Darcy, R. and O’Driscoll, C.M. (2013) Gene Silencing of TNF-Alpha in a Murine Model of Acute Colitis Using a Modified Cyclodextrin Delivery System. Journal of Controlled Release, 168, 28-34.
[17] Choi, S.H., Chung, J.W., Priestley, R.D. and Kwak, S.-Y. (2012) Functionalization of Polysulfone Hollow Fiber Membranes with Amphiphilic-β-Cyclodextrin and Their Applications for the Removal of Endocrine Disrupting Plasticizer. Journal of Membrane Science, 409-410, 75-81.
[18] Liu, Z., Qiao, J., Tian, Y., Wu, M., Niu, Z. and Huang, Y. (2014) Polymeric Supra-Amphiphiles Based on Terminal Group Electrostatic Interactions: Fabrication of Micelles with Modifiable Surfaces. Langmuir, 30, 8938-8944.
[19] Ji, R., Cheng, J., Yang, T., Song, C.C., Li, L., Du, F.S. and Li, Z.C. (2014) Shell-Sheddable, pH-Sensitive Supramolecular Nanoparticles Based on Ortho Ester-Modified Cyclodextrin and Adamantyl PEG. Biomacromolecules, 15, 3531-3539.
[20] Choisnard, L., Geze, A., Vanhaverbeke, C., Josias B.G. Yameogo, J.B.G., Putaux, J.L., Brasme, B., Jullien, L., Boullanger, S., Elfakir, C. and Wouessidjewe, D. (2011) Physicochemical Characterization of α-, β-, and γ-Cyclodextrins Bioesterified with Decanoate Chains Used as Building Blocks of Colloidal Nanoparticles. Biomacromolecules, 12, 3031-3038.
[21] Abdelwahed, W., Degobert, G., Dubes, A., Parrot-Lopez, H. and Fessi, H. (2008) Sulfated and Non-Sulfated Amphiphilic-β-Cyclodextrins: Impact of Their Structural Properties on the Physicochemical Properties of Nanoparticles. International Journal of Pharmaceutics, 351, 289-295.
[22] Chmurski, K., Bilewicz, R. and Jurczak, J. (1996) Monolayer Behavior of [6-Deoxy-6-S-phenyl]-α-, β-, and γ-cyclodextrins at the Air-Water Interface. Langmuir, 12, 6114-6118.
[23] Kasselouri, A., Coleman, A.W. and Baszkin, A. (1996) Mixed Monolayers of Amphiphilic Cyclodextrins and Phospholipids: I. Miscibility under Dynamic Conditions of Compression. Journal of Colloid and Interface Science, 180, 384-397.
[24] Wazynska, M., Temiriusz, A., Chmurski, K., Bilewicz, R. and Jurczak, J. (2000) Synthesis and Monolayer Behavior of Amphiphilic Per(2,3-di-O-alkyl)-α- and β-Cyclodextrins and Hexakis(6-deoxy-6-thio-2,3-di-O-pentyl)-α-Cyclodextrin at an Air-Water Interface. Tetrahedron Letters, 41, 9119-9123.
[25] Kawabata, Y., Matsumoto, M., Nakamura, T., Tanaka, M., Manda, E., Takahashi, H., Tamura, S., Tagaki, W., Nakahara, H. and Fukuda, K. (1988) Langmuir-Blodgett Films of Amphiphilic Cyclodextrins. Thin Solid Films, 159, 353- 358.
[26] Parrot-Lopez, H., Ling, C.-C., Zhang, P., Baszkin, A., Albrecht, G., de Rango, C. and Coleman, A.W. (1992) Self-Assembling Systems of the Amphiphilic Cationic Per-6-amino-β-cyclodextrin 2,3-di-O-alkyl Ethers. Journal of the American Chemical Society, 114, 5479-5480.
[27] Tchoreloff, P.C., Boissonnade, M.M., Coleman A.W. and Baszkin, A. (1995) Amphiphilic Monolayers of Insoluble Cyclodextrins at the Water/Air Interface. Surface Pressure and Surface Potential Studies. Langmuir, 11, 191-196.
[28] Lesieur, S., Charon, D., Lesieur, P., Ringard-Lefebvre, C., Muguet, V., Duchêne, D. and Wouessidjewe, D. (2000) Phase Behavior of Fully Hydrated DMPC-Amphiphilic Cyclodextrin Systems. Chemistry and Physics of Lipids, 106, 127-144.
[29] Dubes, A., Degober, G., Fessi, H. and Parrot-Lopez, H. (2003) Synthesis and Characterisation of Sulfated Amphiphilic α-, β- and γ-Cyclodextrins: Application to the Complexation of Acyclovir. Carbohydrate Research, 338, 2185-2193.
[30] Falvey, P., Lim, C.W., Darcy, R., Revermann, T., Karst, U., Giesbers, M., Marcelis, A.T.M., Lazar, A., Coleman, A.W., Reinhoudt, D.N. and Ravoo, B.J. (2005) Bilayer Vesicles of Amphiphilic Cyclodextrins: Host Membranes That Recognize Guest Molecules. Chemistry—A European Journal, 11, 171-180.
[31] Skiba, M., Nemati, F., Puisieux, F., Duchêne, D. and Wouessidjewe, D. (1996) Spontaneous Formation of Drug-Containing Amphiphilic β-Cyclodextrin Nanocapsules. International Journal of Pharmaceutics, 145, 241-245.
[32] Ravoo, B.J. and Darcy, R. (2000) Cyclodextrin Bilayer Vesicles. Angewandte Chemie International Edition, 39, 4324-4326.<4324::AID-ANIE4324>3.0.CO;2-O
[33] Fatouros, D.G., Hatzidimitriou, K. and Antimisiaris, S.G. (2001) Liposomes Encapsulating Prednisolone and Prednisolone-Cyclodextrin Complexes: Comparison of Membrane Integrity and Drug Release. European Journal of Pharmaceutical Sciences, 13, 287-296.
[34] Sukegawa, T., Furuike, T., Niikura, K., Yamagishi, A., Monde K. and Nishimura, S.-I. (2002) Erythrocyte-Like Liposomes Prepared by Means of Amphiphilic Cyclodextrin Sulfates. Chemical Communications, 5, 430-431.
[35] Oku, N., Kendall, D.A. and MacDonald, R.C. (1982) A Simple Procedure for the Determination of the Trapped Volume of Liposomes. Biochimica et Biophysica Acta, 691, 332-340.
[36] Sakai, T., Kurosawa, H., Okada, T. and Mishima, S. (2011) Vesicle Formation in Mixture of a PEO-PPO-PEO Block Copolymer (Pluronic P123) and a Nonionic Surfactant (Span 65) in Water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389, 82-89.
[37] Ashton, P.R., Königer, R. and Stoddart, J.F. (1996) Amino Acid Derivatives of β-Cyclodextrin. Journal of Organic Chemistry, 61, 903-908.
[38] Baumann, R. and Rys, P. (1999) Metachromatic Activity of β-Cyclodextrin Sulfates as Heparin Mimics. International Journal of Biological Macromolecules, 24, 15-18.
[39] Szoka Jr., F. and Papahadjopoulos, D. (1978) Procedure for Preparation of Liposomes with Large Internal Aqueous Space and High Capture by Reverse-Phase Evaporation. Proceedings of the National Academy of Sciences of the United States of America, 75, 4194-4198.
[40] Rojanapanthu, P., Sarisuta, N., Chaturon, K. and Kraisintu, K. (2003) Physicochemical Properties of Amphotericin B Liposomes Prepared by Reverse-Phase Evaporation Method. Drug Development and Industrial Pharmacy, 29, 31-37.
[41] Lemos-Senna, E., Wouessidjewe, D., Lesieur, S. and Duchêne, D. (1998) Preparation of Amphiphilic Cyclodextrin Nanospheres Using the Emulsification Solvent Evaporation Method. Influence of the Surfactant on Preparation and Hydrophobic Drug Loading. International Journal of Pharmaceutics, 170, 119-128.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.