[1]
|
Bai, Z., Demmel, J., Dongarra, J., Ruhe, A. and van der Vorst, H. (1999) Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia.
|
[2]
|
Bauer, F.L. (1957) Das Verfahren der Treppeniteration und verwandte Verfahren zur Losung algebraischers Eigenwertprobleme. Zeitschrift für angewandte Mathematik und Physik ZAMP, 8, 214-235. http://dx.doi.org/10.1007/BF01600502
|
[3]
|
Dax, A. Restarted Krylov Methods for Calculating Exterior Eigenvalues of Large Matrices. Tech. Rep., Hydrological Service of Israel, in Preparation.
|
[4]
|
Demmel, J.W. (1997) Applied Numerical Linear Algebra. SIAM, Philadelphia. http://dx.doi.org/10.1137/1.9781611971446
|
[5]
|
Golub, G.H. and Van Loan, C.F. (1983) Matrix Computations. Johns Hopkins University Press, Baltimore.
|
[6]
|
Horn, R.A. and Johnson, C.R. (1985) Matrix Analysis. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511810817
|
[7]
|
Parlett, B.N. (1980) The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs.
|
[8]
|
Reinsch, C.H. (1971) Simultaneous Iteration Method for Symmetric Matrices. In: Wilkinson, J.H. and Reinsch, C.H., Eds., Handbook for Automatic Computation (Linear Algebra), Springer-Verlag, New York, 284-302.
|
[9]
|
Rutishauer, H. (1969) Computational Aspects of F. L. Bauer’s Simultaneous Iteration Method. Numerische Mathematik, 13, 4-13. http://dx.doi.org/10.1007/BF02165269
|
[10]
|
Rutishauser, H. (1970) Simultaneous Iteration Method for Symmetric Matrices. Numerische Mathematik, 16, 205-223. http://dx.doi.org/10.1007/BF02219773
|
[11]
|
Sorensen, D.C. (1992) Implicit Application of Polynomial Filters in a k-Step Arnoldi Method. SIAM Journal on Matrix Analysis and Applications, 13, 357-385. http://dx.doi.org/10.1137/0613025
|
[12]
|
Stewart, G.W. (1969) Accelerating the Orthogonal Iteration for the Eigenvalues of a Hermitian Matrix. Numerische Mathematik, 13, 362-376. http://dx.doi.org/10.1007/BF02165413
|
[13]
|
Stewart, G.W. (2001) Matrix Algorithms, Volume II: Eigensystems. SIAM, Philadelphia.
|
[14]
|
Trefethen, L.N. and Bau III, D. (1997) Numerical Linear Algebra. SIAM, Philadelphia. http://dx.doi.org/10.1137/1.9780898719574
|
[15]
|
Watkins, D.S. (2007) The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods. SIAM, Philadelphia. http://dx.doi.org/10.1137/1.9780898717808
|
[16]
|
Wilkinson, J.H. (1965) The Algebraic Eigenvalue Problem. Clarendon Press, Oxford.
|
[17]
|
Wu, K. and Simon, H. (2000) Thick-Restarted Lanczos Method for Large Symmetric Eigenvalue Problems. SIAM Journal on Matrix Analysis and Applications, 22, 602-616. http://dx.doi.org/10.1137/S0895479898334605
|
[18]
|
Yamazaki, I., Bai, Z., Simon, H., Wang, L. and Wu, K. (2010) Adaptive Projection Subspace Dimension for the Thick-Restart Lanczos Method. ACM Transactions on Mathematical Software, 37, 1-18. http://dx.doi.org/10.1145/1824801.1824805
|
[19]
|
Zhang, F. (1999) Matrix Theory: Basic Results and Techniques. Springer-Verlag, New York. http://dx.doi.org/10.1007/978-1-4757-5797-2
|