Fabrication, Characterization and Optical Properties of CuIn3Se5 Bulk Compounds


The present work prepared the CuIn3Se5 ingots by using a horizontal Bridgman method and investigated the Energy Dispersive Spectrometry (EDS) and X-Ray Diffraction (XRD) to calculate the compositions of the ingots. Photoluminescence was used to check their optical properties. It was found that CuIn3Se5 had either a Stanite structure, an Ordered Defect Chalcopyrite (ODC) structure, or an Ordered Vacancy Chalcopyrite (OVC) structure. The gap energy obtained by Photoluminescence (PL) for the different samples is 1.23 eV. Studying the variation of the gap as a function of the temperature shows that the transition is a D-A type.

Share and Cite:

Habib, D. , Aoudé, O. , Karishy, S. and Moussa, G. (2015) Fabrication, Characterization and Optical Properties of CuIn3Se5 Bulk Compounds. World Journal of Condensed Matter Physics, 5, 201-208. doi: 10.4236/wjcmp.2015.53021.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Green, M.A., Emery, K., King, D.L., Igary S. and Warta, W. (2003) Solar Cell Efficiency Tables (Version 21). Progress in Photovoltaics: Research and Applications, 11, 39-45.
[2] Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B. and Noufi, R. (2008) 19.9%-Efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor. Progress in Photovoltaics: Research and Applications, 16, 235-239.
[3] Schmidt, D., Ruckh, M., Grunwald, F. and Sckock. (1993) Chalcopyrite/Defect Chalcopyrite Heterojunctions on the Basis of CuInSe2. Journal of Applied Physics, 73, 2902.
[4] Meadows, H.J., Bhatia, A., Stephan, C., Schorr, S., Scarpulla, M.A. and Dale, P.J. (2013) Crystallographic Study of Phases Present in CuInSe2 Absorber Layers Produced by Laser Annealing Co-Electrodeposited Precursors. Proceedings of SPIE 8823, Thin Film Solar Technology V, 882302.
[5] Islam, M.M., Sakurai, T., Yamada, A., Otagiri, S., Ishizuka, S., Matsubara, K., Niki, S. and Akimoto, K. (2011) Determination of Cu(In1-xGax)3Se5 Defect Phase in MBE Grown Cu(In1-xGax)Se2 Thin Film by Rietveld Analysis. Solar Energy Materials and Solar Cells, 95, 231-234.
[6] Adhikari, N., Bereznev, S., Laes, K., Kois, J., Volobujeva, O., Raadik, T., Traksmaa, R., Tverjanovich, A., Öpik, A. and Mellikov, E. (2011) High-Vacuum Evaporation of n-CuIn3Se5Photoabsorber Films for Hybrid PV Structures. Journal of Electronic Materials, 40, 2374-2381.
[7] El Haj Moussa, G.W., Ariswan, Khoury, A., Guastavino, F. and Llinarés, C. (2002) Fabrication and Study of Photovoltaic Material CuIn1-xGaxSe2 Bulk and Thin Films Obtained by the Technique of Close-Spaced Vapor Transport. Solid State Communications, 122, 391-396.
[8] Contreras, M.A., Wiesner, H., Mtson, R., Tuttle, J., Ramanathan, K. and Noufi, R. (1996) Defect Chalcopyrite Cu(In1-xGax)3Se5 Polycrystalline Thin-Film Materials. Materials Research Society Symposium Proceedings, 426, 243-254.
[9] Marin, G., Tauleigne, S., Wasim, S.M., Rincon, C., Guervara, R., Delgado, J.M. and Rincón, C. (1998) X-Ray Powder Diffraction and Optical Characterizations of the Cu(In1-xGax)3Se5 Semiconducting Systems. Materials Research Bulletin, 33, 1057-1068.
[10] Wang, H.P., Schih, I. and Champness, C.H. (2001) Effect of Sodium on Bridgman-Grown Cu(In1-xGax)3Se5 Crystalline Materials. Thin Solid Films, 387, 60-62.
[11] Djellal, L., Bellal, B. and Trari, M. (2012) Physical, Photoelectrochemical Properties of CuIn3Se5 and Relevance for Hydrogen Production. Materials Chemistry and Physics, 137, 340-345.
[12] Habib, D., Al Asmar, R., El Helou, Z. and El Haj Moussa, G. (2013) Influence of Iodine Pressure on the Growth of CuIn1-xGaxSe2 Thin Films Obtained by Close-Spaced Vapor Transport CSVT. World Journal of Condensed Matter Physics, 3, 164-168.
[13] Suzuki, M., Uenoyama, T., Wada, T., Hanada, T. and Nakamura, Y. (1997) Effect of Crystal Symmetry on Electronic Structures of CuInSe2 and Related Compounds. Japanese Journal of Applied Physics, 36, L1139-L1141.
[14] Insignares-Cuello, C., Broussillou, C., Bermúdez, V., Saucedo, E., Pérez-Rodríguez, A. and Izquierdo-Roca, V. (2014) Raman Scattering Analysis of Electrodeposited Cu(In,Ga)Se2 Solar Cells: Impact of Ordered Vacancy Compounds on Cell Efficiency. Applied Physics Letters, 105, Article ID: 021905.
[15] Tanaka, T., Tanahashi, N., Yamaguchi, T. and Yoshida, A. (1998) Characterization of Cu(InxGa1-x)2Se3.5 Thin Films Prepared by rf Sputtering. Solar Energy Materials and Solar Cells, 50, 13-18.
[16] Marin, G., Tauleigne, S., Guevara, R., Delgado, J.M., Wasim, S.M., Bocaranda, P., Sanchez Perez, G. and Bacquet, G. (1997) Crystal Growth Structural Characterization and Room Temperature Band Gap of CuIn3Se5 and CuInGa3Se5. Proceedings of the 11th International Conference on Ternary and Multinary Compounds, Salford, 8-12 September 1997, 573-577.
[17] Negami, T., Kohara, N., Nikihiko, M., Wada, T. and Hirao, T. (1995) Preparation and Characterization of Cu(In1-xGax)3Se5 Thin Films. Applied Physics Letters, 67, 825-827.
[18] Hofmann, A. and Pettenkofer, C. (2012) The CuInSe2-CuIn3Se5 Defect Compound Interface: Electronic Structure and Band Alignment. Applied Physics Letters, 101, Article ID: 062108.
[19] Wasim, S.M. (1986) Transport Properties of CuInSe2. Solar Cells, 16, 289-316.
[20] Rincon, C., Bellabarba, C., Gonzalez, J. and Sánchez Pérez, G. (1986) Optical Properties and Characterization of CuInSe2. Solar Cells, 16, 335-349.
[21] El Haj Moussa, G., Ajaka, M., El Tahchi, M., Eid, E. and Llinares, C. (2005) Ellipsometric Spectroscopy on Polycrystalline CuIn1-xGaxSe2: Identification of Optical Transitions. Physica Status Solidi (a), 202, 469-475.
[22] Meada, K. (1965) Temperature Dependence of Pair Band Luminescence in GaP. Journal of Physics and Chemistry of Solids, 26, 595-605.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.