Temperature Dependent Zeno Time for a Two Level Atom Traversing through a Thermal Magnetic Barrier in the Framework of Weak Measurement


The Zeno time has been calculated for a metastable two-level atom tunneling through a interacting thermal magnetic field. The process of weak measurement has been utilized for the estimation of the timescale. Zeno time has been shown to be temperature dependent. From the calculation it is evident that the Zeno time decreases with the increase of temperature. Moreover, the result restricts the Zeno time to a maximum limiting value, irrespective of how frequent the measurement process is.

Share and Cite:

Bhattacharya, S. and Roy, S. (2015) Temperature Dependent Zeno Time for a Two Level Atom Traversing through a Thermal Magnetic Barrier in the Framework of Weak Measurement. Journal of Modern Physics, 6, 1261-1269. doi: 10.4236/jmp.2015.69131.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Mishra, B. and Sudarshan, E.C.G. (1977) Journal of Mathematical Physics, 18, 756.
[2] Chiu, C.B., Sudarshan, E.C.G. and Mishra, B. (1977) Physical Review D, 16, 520.
[3] Ghirardi, G.C., Omero, C., Weber, T. and Rimini, A. (1979) Nuovo Cimento, 52, 421-442.
[4] Peres, A. (1980) American Journal of Physics, 48, 931.
[5] Joos, E. (1984) Physical Review D, 29, 1626.
[6] Kraus, K. (1981) Foundations of Physics, 11, 547-576.
[7] Home, D. and Whitaker, M.A.B. (1986) Journal of Physics A, 19, 1847.
[8] Khalfin, L.A. (1958) Zhurnal Eksperimental’noiTeoreticheskoi Fiziki, 33, 1371.
[9] Itano, W.M., Heinzen, D.J., Bollinger, J.J. and Wineland, D.J. (1990) Physical Review A, 41, 2295.
[10] Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A. and Kasevich, M. (1995) Physical Review Letters, 74, 4763.
[11] Kwiat, P., White, A.G., Mitchell, J.R., Nairz, O., Weihs, G., Weinfurter, H. and Zeilinger, A. (1999) Physical Review Letters, 83, 4725-4728.
[12] Wilkinson, S.R., Bharucha, C.F., Fischer, M.C., Madison, K.W., Morrow, P.R., Niu, Q., Sundaram, B. and Raizen, M.G. (1997) Nature, 387, 575.
[13] Fischer, M.C., Gutiérrez-Medina, B. and Raizen, M.G. (2001) Physical Review Letters, 87, Article ID: 040402.
[14] Nagels, B., Hermans, L.J.F. and Chapovsky, P.L. (1997) Physical Review Letters, 79, 3097-3100.
[15] Mølhave, K. and Drewsen, M. (2000) Physics Letters A, 268, 45-49.
[16] Nakanishi, T., Yamane, K. and Kitano, M. (2001) Physics Letters A, 65, Article ID: 013404.
[17] Facchi, P., Lidar, D.A. and Pascazio, S. (2004) Physics Letters A, 69, Article ID: 032314.
[18] Nakazato, H., Unoki, M. and Yuasa, K. (2004) Physics Letters A, 70, Article ID: 012303.
[19] Shao, X.Q., Wang, H.F., Chen, L., Zhang, S., Zhao, Y.F. and Yeon, K.H. (2009) Journal of the Optical Society of America B, 26, 2440.
[20] Maniscalco, S., Francica, F., Zaffino, R.L., Lo Gullo, N. and Plastina, F. (2008) Physical Review Letters, 100, Article ID: 090503.
[21] Aharonov, Y., Erez, N. and Reznik, B. (2003) Journal of Modern Optics, 50, 1139-1149.
[22] Aharonov, Y., Albert, D. and Vaidman, L. (1988) Physical Review Letters, 60, 1351-1354.
[23] Aharonov, Y. and Vaidman, L. (1990) Physical Review A, 41, 11-20.
[24] Aharonov, Y., Albert, D., Casher, A. and Vaidman, L. (1986) New Techniques and Ideas in Quantum Measurement Theory. Academy of Science, New York, 417.
[25] Peres, A. (1980) American Journal of Physics, 48, 931.
[26] Nakazato, H., Namiki, M., Pascazio, S. and Rauch, H. (1995) Physics Letters A, 199, 27-32.
[27] Davies, P.C.W. (2009) Physical Review A, 79, Article ID: 032103.
[28] Bhattacharya, S. (2014) Physical Review A, 89, Article ID: 022110.
[29] Gardiner, C.W. and Zoller, P. (2004) Quantum Noise. 3rd Edition, Springer, Berlin.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.