Rank Functions of Fuzzy Greedoids ()
Abstract
Fuzzy
greedoids were recently introduced as a fuzzy set generalization of (crisp)
greedoids. We characterize fuzzy languages which define fuzzy greedoids, give
necessary properties and sufficient properties of the fuzzy rank function of a
fuzzy greedoid, give a characterization of the rank function for a weighted
greedoid, and discuss the rank closure of a fuzzy greedoid.
Share and Cite:
Tedford, S. (2015) Rank Functions of Fuzzy Greedoids.
Open Journal of Discrete Mathematics,
5, 65-73. doi:
10.4236/ojdm.2015.54006.
Conflicts of Interest
The authors declare no conflicts of interest.
References
[1]
|
Zadeh, L.A. (1965) Fuzzy Sets. Information and Control, 8, 338-353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X
|
[2]
|
Goetschel Jr., R. and Voxman, W. (1988) Fuzzy Matroids. Fuzzy Sets and Systems, 27, 291-301. http://dx.doi.org/10.1016/0165-0114(88)90055-3
|
[3]
|
Goetschel Jr., R. and Voxman, W. (1991) Fuzzy Rank Functions. Fuzzy Sets and Systems, 42, 245-258. http://dx.doi.org/10.1016/0165-0114(91)90150-O
|
[4]
|
Goetschel Jr., R. and Voxman, W. (1992) Spanning Properties for Fuzzy Matroids. Fuzzy Sets and Systems, 51, 313-321. http://dx.doi.org/10.1016/0165-0114(92)90022-V
|
[5]
|
Al-Hawary, T. (2011) Fuzzy Greedoids. International Journal of Pure and Applied Mathematics, 70, 285-295.
|
[6]
|
Korte, B. and Lovász, L. (1981) Mathematical Structures Underlying Greedy Algorithms. Fundamentals of Computation Theory. Lecture Notes in Computer Sciences, 117, 205-209. http://dx.doi.org/10.1007/3-540-10854-8_22
|
[7]
|
Korte, B., Lovász, L. and Schrader, R. (1991) Greedoids. Springer-Verlag, New York. http://dx.doi.org/10.1007/978-3-642-58191-5
|
[8]
|
Gordon, G. and McMahon, E. (1989) A Greedoid Polynomial Which Distinguishes Rooted Arborescences. Proceedings of the American Mathematical Society, 107, 287-298. http://dx.doi.org/10.1090/s0002-9939-1989-0967486-0
|