A Rice GRAS Gene Has an Impact on the Success of Arbuscular Mycorrhizal Colonization


Arbuscular mycorrhiza (AM) is one of the most spread symbiosis established between 80% of land plants and soil fungi belonging to the Glomeromycota. Molecular determinants involved in the formation of arbuscular mycorrhizas are still poorly understood. It has been demonstrated that in both Legumes and rice plants, several GRAS transcription factors are directly involved in both mycorrhizal signaling and colonization, namely NSP1, NSP2, RAM1, DELLA, DELLA-interacting protein (DIP1) and RAD1. Here, we focused on a rice GRAS protein, named Arbuscular Mycorrhizal 18 (OsAM18), previously identified as specifically expressed in rice mycorrhizal roots, and considered as an AM-specific gene. Phylogenetic analysis revealed that OsAM18 had a peculiar amino acid sequence, which clustered with putative SCARECROW proteins, even though it formed a separate branch. Allelic osma18 mutant displayed a drastic reduction in mycorrhizal colonization in-tensity and in arbuscule abundance, as mirrored by OsPT11 expression level. Non-mycorrhizal osam18 plants displayed a comparable plant development and root apparatus compared with the WT, while mycorrhizal osam18 mutants showed a reduction of plant biomass compared with mycorrhizal WT plants. The results suggest that OsAM18 is a rice protein, which is likely to have an impact not only on the colonization process and AM functionality, but also on the systemic effects of the AM symbiosis.

Share and Cite:

Fiorilli, V. , Volpe, V. , Zanini, S. , Vallino, M. , Abbà, S. and Bonfante, P. (2015) A Rice GRAS Gene Has an Impact on the Success of Arbuscular Mycorrhizal Colonization. American Journal of Plant Sciences, 6, 1905-1915. doi: 10.4236/ajps.2015.612191.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Redecker, D., Schüβler, A., Stockinger, H., Stürmer, S.L., Morton, J.B. and Walker, C. (2013) An Evidence-Based Consensus for the Classification of Arbuscular Mycorrhizal Fungi (Glomeromycota). Mycorrhiza, 23, 515-531.
[2] Bonfante, P. and Genre, A. (2010) Mechanisms Underlying Beneficial Plant-Fungus Interactions in Mycorrhizal Symbiosis. Nature Communications, 1, 48.
[3] Govindarajulu, M., Pfeffer, P.E., Jin, H.R., Abubaker, J., Douds, D.D., Allen, J.W., Bücking, H., Lammers, P.J. and Shachar-Hil, Y. (2005) Nitrogen Transfer in the Arbuscular Mycorrhizal Symbiosis. Nature, 435, 819-823.
[4] Javot, H., Penmetsa, R.V., Terzaghi, N., Cook, D.R. and Harrison, M.J. (2007) A Medicago truncatula Phosphate Transporter Indispensable for the Arbuscular Mycorrhizal Symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 104, 1720-1725.
[5] Giovannetti, M., Tolosano, M., Volpe, V., Kopriva, S. and Bonfante, P. (2014) Identification and Functional Characterization of a Sulfate Transporter Induced by both Sulfur Starvation and Mycorrhiza Formation in Lotus japonicus. New Phytologist, 204, 609-619.
[6] Pfeffer, P.E., Douds, D.D., Becard, G. and Shachar-Hill, Y. (1999) Carbon Uptake and the Metabolism and Transport of Lipids in an Arbuscular Mycorrhiza. Plant Physiology, 120, 587-598.
[7] Gutjahr, C. and Parniske, M. (2013) Cell and Developmental Biology of Arbuscular Mycorrhiza Symbiosis. Annual Review of Cell and Developmental Biology, 29, 593-617.
[8] Hohnjec, N., Vieweg, M.F., Pühler, A., Becker, A. and Küster, H. (2005) Overlaps in the Transcriptional Profiles of Medicago truncatula Roots Inoculated with Two Different Glomus Fungi Provide Insights into the Genetic Program Activated during Arbuscular Mycorrhiza. Plant Physiology, 137, 1283-1301.
[9] Liu, J., Maldonado-Mendoza, I., Lopez-Meyer, M., Cheung, F., Town, C.D. and Harrison, M.J. (2007) Arbuscular Mycorrhizal Symbiosis Is Accompanied By Local And Systemic Alterations in Gene Expression and an Increase in Disease Resistance in the Shoots. The Plant Journal, 50, 529-544.
[10] Guether, M., Balestrini, R., Hannah, M., He, J., Udvardi, M.K. and Bonfante, P. (2009) Genome-Wide Reprogramming Of Regulatory Networks, Transport, Cell Wall And Membrane Biogenesis During Arbuscular Mycorrhizal Symbiosis in Lotus japonicus. New Phytologist, 182, 200-212.
[11] Fiorilli, V., Catoni, M., Miozzi, L., Novero, M., Accotto, G.P. and Lanfranco, L. (2009) Global and Cell-Type Gene Expression Profiles in Tomato Plants Colonized by an Arbuscular Mycorrhizal Fungus. New Phytologist, 184, 975-987.
[12] Javot, H., Penmetsa, R.V., Breuillin, F., Bhattarai, K.K., Noar, R.D., Gomez, S.K., Zhang, Q., Cook, D.R. and Harrison, M.J. (2011) Medicago truncatula Mtpt4 Mutants Reveal a Role for Nitrogen in the Regulation of Arbuscule Degeneration in Arbuscular Mycorrhizal Symbiosis. The Plant Journal, 68, 954-965.
[13] Yang, S.Y., Gronlund, M., Jakobsen, I., Grotemeyer, M.S., Rentsch, D., Miyao, A., Hirochika, H., Kumar, C.S., Sundaresan, V., Salamin, N., Catausan, S., Mattes, N., Heuer, S. and Paszkowski, U. (2012) Nonredundant Regulation of Rice Arbuscular Mycorrhizal Symbiosis by Two Members of the Phosphate Transporter1 Gene Family. The Plant Cell, 24, 4236-4251.
[14] Balestrini, R. and Bonfante, P. (2014) Cell Wall Remodeling in Mycorrhizal Symbiosis: A Way towards Biotrophism. Frontiers in Plant Science, 5, 237.
[15] Xue, L., Cui, H., Buer, B., Vijayakumar, V., Delaux, P.M., Junkermann, S. and Bucher, M. (2015) Network of GRAS Transcription Factors Involved in the Control of Arbuscule Development in Lotus japonicus. Plant Physiology, 167, 854-871.
[16] Hogekamp, C., Arndt, D., Pereira, P.A., Becker, J.D., Hohnjec, N. and Küster, H. (2011) Laser Microdissection Unravels Cell-Type-Specific Transcription in Arbuscular Mycorrhizal Roots, Including CAAT-Box Transcription Factor Gene Expression Correlating with Fungal Contact and Spread. Plant Physiology, 157, 2023-2043.
[17] Gaude, N., Bortfeld, S., Duensing, N., Lohse, M. and Krajinski, F. (2012) Arbuscule Containing and Non-Colonized Cortical Cells of Mycorrhizal Roots Undergo Extensive and Specific Reprogramming during Arbuscular Mycorrhizal Development. The Plant Journal, 69, 510-528.
[18] Gobbato, E., Marsh, J.F., Vernié, T., Wang, E., Maillet, F., Kim, J., Miller, J.B., Sun, J., Bano, S.A., Ratet, P., Mysore, K.S., Dénarié, J., Schultze, M. and Oldroyd, G.E. (2012) A GRAS-Type Transcription Factor with a Specific Function in Mycorrhizal Signaling. Current Biology, 22, 2236-2241.
[19] Devers, E.A., Teply, J., Reinert, A., Gaude, N. and Krajinski, F. (2013) An Endogenous Artificial Microrna System for Unraveling the Function of Root Endosymbioses Related Genes in Medicago truncatula. BMC Plant Biology, 13, 82.
[20] Volpe, V., Dell’Aglio, E., Giovannetti, M., Ruberti, C., Costa, A., Genre, A., Guether, M. and Bonfante, P. (2013) An AM-Induced, MYB-Family Gene of Lotus japonicus (LjMAMI) Affects Root Growth in an AM-Independent Manner. The Plant Journal, 73, 442-455.
[21] Yokota, K., Soyano, T., Kouchi, H. and Hayashi, M. (2010) Function Of GRAS Proteins in Root Nodule Symbiosis Is Retained in Homologs of a Non-Legume, Rice. Plant and Cell Physiology, 51, 1436-1442.
[22] Di Laurenzio, L., Wysocka-Diller, J., Malamy, J.E., Pysh, L., Helariutta, Y., Freshour, G., Hahn, M.G., Feldmann, K.A. and Benfey, P.N. (1996) The SCARECROW Gene Regulates an Asymmetric Cell Division that Is Essential for Generating the Radial Organization of the Arabidopsis Root. Cell, 86, 423-433.
[23] Peng, J., Carol, P., Richards, D.E., King, K.E., Cowling, R.J., Murphy, G.P. and Harberd, N.P. (1997) The Arabidopsis GAI Gene Defines a Signaling Pathway that Negatively Regulates Gibberellin Responses. Genes and Development, 11, 3194-3205.
[24] Pysh, L.D., Wysocka-Diller, J.W., Camilleri, C., Bouchez, D. and Benfey, P.N. (1999) The GRAS Gene Family in Arabidopsis: Sequence Characterization and Basic Expression Analysis of the SCARECROW-LIKE Genes. The Plant Journal, 18, 111-119.
[25] Bolle, C. (2004) The Role of GRAS Proteins in Plant Signal Transduction and Development. Planta, 218, 683-692.
[26] Kaló, P., Gleason, C., Edwards, A., Marsh, J., Mitra, R.M., Hirsch, S., Jakab, J., Sims, S., Long, S.R., Rogers, J., Kiss, G.B., Downie, J.A. and Oldroyd, G.E. (2005) Nodulation Signaling in Legumes Requires NSP2, a Member of the GRAS Family of Transcriptional Regulators. Science, 308, 1786-1789.
[27] Smit, P., Raedts, J., Portyanko, V., Debellé, F., Gough, C., Bisseling, T. and Geurts, R. (2005) NSP1 of the GRAS Protein Family Is Essential for Rhizobial Nod Factor-Induced Transcription. Science, 308, 1789-1791.
[28] Lauressergues, D., Delaux, P.M., Formey, D., Lelandais-Brière, C., Fort, S., Cottaz, S., Bécard, G., Niebel, A., Roux, C. and Combier, J.P. (2012) The Micro-RNA Mir171h Modulates Arbuscular Mycorrhizal Colonization of Medicago truncatula by Targeting NSP2. The Plant Journal, 72, 512-522.
[29] Delaux, P.M., Bécard, G. and Combier, J.P. (2013) NSP1 Is a Component of the Myc Signaling Pathway. The New Phytologist, 199, 59-65.
[30] Floss, D.S., Levy, J.G., Lévesque-Tremblay, V., Pumplin, N. and Harrison, M.J. (2013) DELLA Proteins Regulate Arbuscule Formation in Arbuscular Mycorrhizal Symbiosis. Proceeding of the National Academy of Sciences of the USA, 110, E5025-E5034.
[31] Hirsch, S. and Oldroyd, G.E. (2009) GRAS-Domain Transcription Factors that Regulate Plant Development. Plant Signaling and Behavior, 4, 698-700.
[32] Liu ,W., Kohlen, W., Lillo, A., Op Den Camp, R., Ivanov, S., Hartog, M., Limpens, E., Jamil, M., Smaczniak, C., Kaufmann, K., Yang, W.C., Hooiveld, G.J.E.J., Charnikhova, T., Bouwmeester, H.J., Bisseling, T. and Geurts, R. (2011) Strigolactone Biosynthesis in Medicago truncatula and Rice Requires the Symbiotic GRAS-Type Transcription Factors NSP1 and NSP2. The Plant Cell, 23, 3853-3865.
[33] Yu, N., Luo, D., Zhang, X., Liu, J.,Wang, W., Jin, Y., Dong, W., Liu, J., Liu, H., Yang, W., Zeng, L., Li, Q., He, Z., Oldroyd, G.E. and Wang, E. (2014) A DELLA Protein Complex Controls the Arbuscular Mycorrhizal Symbiosis in Plants. Cell Research, 24, 130-133.
[34] Güimil, S., Chang, H.S., Zhu, T., Sesma, A., Osbourn, A., Roux, C., Ioannidis, V., Oakeley, E.J., Docquier, M., Descombes, P., Briggs, S.P. and Paszkowski, U. (2005) Comparative Transcriptomics of Rice Reveals an Ancient Pattern of Response to Microbial Colonization. Proceeding of the National Academy of Sciences of the USA, 102, 8066-8070.
[35] Gutjahr, C., Banba, M., Croset, V., An, K., Miyao, A., An, G., Hirochika, H., Imaizumi-Anraku, H. and Paszkowski, U. (2008) Arbuscular Mycorrhiza Specific Signaling in Rice Transcends the Common Symbiosis Signaling Pathway. The Plant Cell, 20, 2989-3005.
[36] Crumpton-Taylor, M., Grandison, S., Png, K.M., Bushby, A.J. and Smith, A.M. (2012) Control of Starch Granule Numbers in Arabidopsis Chloroplasts. Plant Physiology, 158, 905-916.
[37] Hewitt, E.J. (1966) Sand and Water Culture Methods Used in the Study of Plant Nutrition. Commonwealth Agricultural Bureaux, Farnham.
[38] Bairoch, A., Bucher, P. and Hofmann, K. (1997) The PROSITE Database, Its Status in 1997. Nucleic Acids Research, 25, 217-221.
[39] La Cour, T., Kiemer, L., Molgaard, A., Gupta, R., Skriver, K. and Brunak, S. (2004) Analysis and Prediction of Leucine-Rich Nuclear Export Signals. Protein Engineering, Design and Selection, 17, 527-536.
[40] Kawahara, Y., De La Bastide, M., Hamilton, J.P., Kanamori, H., Mccombie, W.R., Ouyang, S., Schwartz, D.C., Tanaka, T., Wu, J., Zhou, S., Childs, K.L., Davidson, R.M., Lin, H., Quesada-Ocampo, L., Vaillancourt, B., Sakai, H., Lee, S.S., Kim, J., Numa, H., Itoh, T., Buell, C.R. and Matsumoto, T. (2013) Improvement of the Oryza sativa Nipponbare Reference Genome Using Next Generation Sequence and Optical Map Data. Rice, 6, 4.
[41] Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., Mcgettigan, P.A., Mcwilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. and Higgins, D.G. (2007) Clustal W and Clustal X Version 2.0. Bioinformatics, 23, 2947-2948.
[42] Paradis, E., Claude, J. and Strimmer, K. (2004) APE: Analyses of Phylogenetics and Evolution in R Language. Bioinformatics, 20, 289-290.
[43] Charif, D. and Lobry, J.R. (2007) Seqin R 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis. In: Elias, G., Ed., Biological and Medical Physics, Biomedical Engineering, Springer, Berlin, 207-232.
[44] Dray, S. and Dufour, A.B. (2007) The Ade4 Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software, 22, 1-20.
[45] Vallino, M., Fiorilli, V. and Bonfante, P. (2014) Rice Flooding Negatively Impacts Root Branching and Arbuscular Mycorrhizal Colonization, but Not Fungal Viability. Plant Cell and Environment, 37, 557-572.
[46] Trouvelot, A., Kough, J.L. and Gianinazzi-Pearson, V. (1986) Mesure Du Taux De Mycorhization VA D’un Syste`Me Radiculaire. In: Gianinazzi-Pearson, V. and Gianinazzi, S., Eds., Mycorrhizae: Physiology and Genetics, INRA-Press, Paris, 217-221.
[47] Ririe, K.M., Rasmussen, R.P. and Wittwer, C.T. (1997) Product Differentiation by Analysis of DNA Melting Curves during the Polymerase Chain Reaction. Analytical Biochemistry, 245, 154-160.
[48] Pérez-Tienda, J., Testillano, P.S., Balestrini, R., Fiorilli, V., Azcón-Aguilar, C. and Ferrol, N. (2011) GintAMT2, a New Member of the Ammonium Transporter Family in the Arbuscular Mycorrhizal Fungus Glomus intraradices. Fungal Genetics and Biology, 48, 1044-1055.
[49] Hammer, Ø., Harper, D.A.T. and Ryan, P.D. (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron, 4, 9.
[50] Maillet, F., Poinsot, V., André, O., Puech-Pagès, V., Haouy, A., Gueunier, M., Cromer, L., Giraudet, D., Formey, D., Niebel, A., Martinez, E.A., Driguez, H., Bécard, G. and Dénarié, J. (2011) Fungal Lipochitooligosaccharide Symbiotic Signals in Arbuscular Mycorrhiza. Nature, 469, 58-63.
[51] Gutjahr, C., Casieri, L. and Paszkowski, U. (2009) Glomus Intraradices Induces Changes in Root System Architecture of Rice Independently of Common Symbiosis Signaling. New Phytologist, 182, 829-837.
[52] Genre, A., Ivanov, S., Fendrych, M., Faccio, A., Zársky, V., Bisseling, T. and Bonfante, P. (2012) Multiple Exocytotic Markers Accumulate at the Sites of Perifungal Membrane Biogenesis in Arbuscular Mycorrhizas. Plant Cell Physiology, 53, 244-255.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.