Share This Article:

Nonlinear Bending of Piezoelectric Cylindrical Shell Reinforced with BNNTs under Electro-Thermo-Mechanical Loadings

Abstract Full-Text HTML XML Download Download as PDF (Size:423KB) PP. 743-752
DOI: 10.4236/msa.2015.68076    2,142 Downloads   2,519 Views   Citations

ABSTRACT

Under combined electro-thermo-mechanical loadings, the nonlinear bending of piezoelectric cylindrical shell reinforced with boron nitride nanotubes (BNNTs) is investigated in this paper. By employing nonlinear strains based on Donnell shell theory and utilizing piezoelectric theory including thermal effects, the constitutive relations of the piezoelectric shell reinforced with BNNTs are established. Then the governing equations of the structure are derived through variational principle and resolved by applying the finite difference method. In numerical examples, the effects of geometric nonlinear, voltage, temperature, as well as volume fraction on the deflection and bending moment of axisymmetrical piezoelectric cylindrical shell reinforced with BNNTs are discussed in detail.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Yang, J. and Zhang, P. (2015) Nonlinear Bending of Piezoelectric Cylindrical Shell Reinforced with BNNTs under Electro-Thermo-Mechanical Loadings. Materials Sciences and Applications, 6, 743-752. doi: 10.4236/msa.2015.68076.

References

[1] Chen, Y., Zou, J., Campbell, S.J. and Le Caer, G. (2004) Boron Nitride Nanotubes: Pronounced Resistance to Oxidation. Applied Physics Letters, 84, 2430-2432.
http://dx.doi.org/10.1063/1.1667278
[2] Suryavanshi, A.P., Yu, M.F., Wen, J.G., Tang, C.C. and Bando, Y. (2004) Elastic Modulus and Resonance Behavior of Boron Nitride Nanotubes. Applied Physics Letters, 84, 2527-2529.
http://dx.doi.org/10.1063/1.1691189
[3] Terrones, M., Romo-Herrera, J.M., Cruz-Silva, E., López-Urías, F., Muñoz-Sandoval, E., Velázquez-Salazar, J.J., Terrones, H., Bando, Y. and Golberg, D. (2007) Pure and Doped Boron Nitride Nanotubes. Materials Today, 10, 30-38.
http://dx.doi.org/10.1016/S1369-7021(07)70077-9
[4] Yao, L.Q., Zhang, J.G., Lu, L. and Lai, M.O. (2004) Nonlinear Static Characteristics of Piezoelectric Bending Actuators under Strong Applied Electric Field. Sensors and Actuators A: Physical, 115, 168-175.
http://dx.doi.org/10.1016/j.sna.2004.04.037
[5] Shen, H.-S. (2004) Nonlinear Bending Analysis of Unsymmetric Cross-Ply Laminated Plates with Piezoelectric Actuators in Thermal Environments. Composite Structures, 63, 167-177.
http://dx.doi.org/10.1016/S0263-8223(03)00145-4
[6] Shegokar, N.L. and Lal, A. (2013) Stochastic Nonlinear Bending Response of Piezoelectric Functionally Graded Beam Subjected to Thermoelectromechanical Loadings with Random Material Properties. Composite Structures, 100, 17-33.
http://dx.doi.org/10.1016/j.compstruct.2012.12.032
[7] Narita, F., Shindo, Y. and Mikami, M. (2005) Analytical and Experimental Study of Nonlinear Bending Response and Domain Wall Motion in Piezoelectric Laminated Actuators under Electric Fields. Acta Materialia, 53, 4523-4529.
http://dx.doi.org/10.1016/j.actamat.2005.05.044
[8] Beldica, C.E. and Hilton, H.H. (2001) Nonlinear Viscoelastic Beam Bending with Piezoelectric Control-Analytical and Computational Simulations. Composite Structures, 51, 195-203.
http://dx.doi.org/10.1016/S0263-8223(00)00139-2
[9] Yan, W., Wang, J. and Chen, W.Q. (2014) Cylindrical Bending Responses of Angle-Ply Piezoelectric Laminates with Viscoelastic Interfaces. Applied Mathematical Modelling, 38, 6018-6030.
http://dx.doi.org/10.1016/j.apm.2014.05.025
[10] Narita, F., Shindo, Y. and Hayashi, K. (2005) Bending and Polarization Switching of Piezoelectric Laminated Actuators under Electromechanical Loading. Computers & Structures, 83, 1164-1170.
http://dx.doi.org/10.1016/j.compstruc.2004.08.025
[11] Li, Y.S., Feng, W.J. and Cai, Z.Y. (2014) Bending and Free Vibration of Functionally Graded Piezoelectric Beam Based on Modified Strain Gradient Theory. Composite Structures, 115, 41-50.
http://dx.doi.org/10.1016/j.compstruct.2014.04.005
[12] Sladek, J., Sladek, V., Stanak, P., Zhang, C.Z. and Wünsche, M. (2013) Analysis of the Bending of Circular Piezoelectric Plates with Functionally Graded Material Properties by a MLPG Method. Engineering Structures, 47, 81-89.
http://dx.doi.org/10.1016/j.engstruct.2012.02.034
[13] Fu, Y.M., Wang, J.Z. and Mao, Y.Q. (2012) Nonlinear Analysis of Buckling, Free Vibration and Dynamic Stability for the Piezoelectric Functionally Graded Beams in Thermal Environment. Applied Mathematical Modelling, 36, 4324-4340.
http://dx.doi.org/10.1016/j.apm.2011.11.059
[14] Salehi-Khojin, A. and Jalili, N. (2008) Buckling of Boron Nitride Nanotube Reinforced Piezoelectric Polymeric Composites Subject to Combined Electro-Thermo-Mechanical Loadings. Composites Science and Technology, 68, 1489-1501.
http://dx.doi.org/10.1016/j.compscitech.2007.10.024
[15] Mosallaie Barzoki, A.A., Arani, A.G., Kolahchi, R. and Mozdianfard, M.R. (2012) Electro-Thermo-Mechanical Torsional Buckling of a Piezoelectric Polymeric Cylindrical Shell Reinforced by DWBNNTs with an Elastic Core. Applied Mathematical Modelling, 36, 2983-2995.
http://dx.doi.org/10.1016/j.apm.2011.09.093
[16] Arani, A.G., Amir, S., Shajari, A.R. and Mozdianfard, M.R. (2012) Electro-Thermo-Mechanical Buckling of DWBNNTs Embedded in Bundle of CNTs Using Nonlocal Piezoelasticity Cylindrical Shell Theory. Composites Part B: Engineering, 43, 195-203.
http://dx.doi.org/10.1016/j.compositesb.2011.10.012
[17] Tan, P. and Tong, L.Y. (2001) Micro-Electromechanics Models for Piezoelectric-Fiber-Reinforced Composite Materials. Composites Science and Technology, 61, 759-769.
http://dx.doi.org/10.1016/S0266-3538(01)00014-8
[18] Fu, Y.M. (1997) Nonlinear Dynamic Analysis of Structures. Jinan University Press, Guangzhou.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.