[1]
|
Srivastava, H.M., Garg, M. and Choudhary, S. (2010) A New Generalization of the Bernoulli and Related Polynomials, Russian. Journal of Mathematical Physics, 17, 251-261. http://dx.doi.org/10.1134/S1061920810020093
|
[2]
|
Srivastava, H.M., Garg, M. and Choudhary, S. (2011) Some New Families of Generalized Euler and Genocchi Polynomials. Taiwanese Journal of Mathematics, 15, 283-305.
|
[3]
|
Srivastava, H.M. and Pintér, á. (2004) Remarks on Some Relationships between the Bernoulli and Euler Polynomials. Applied Mathematics Letters, 17, 375-380. http://dx.doi.org/10.1016/S0893-9659(04)90077-8
|
[4]
|
Luo, Q.-M. and Srivastava, H.M. (2005) Some Generalizations of the Apostol Bernoulli and Apostol Euler Polynomials. Journal of Mathematical Analysis and Applications, 308, 290-302. http://dx.doi.org/10.1016/j.jmaa.2005.01.020
|
[5]
|
Luo, Q.-M. (2006) Apostol-Euler Polynomials of Higher Order and Gaussian Hypergeometric Functions. Taiwanese Journal of Mathematics, 10, 917-925.
|
[6]
|
Natalini, P. and Bernardini, A. (2003) A Generalization of the Bernoulli Polynomials. Journal of Applied Mathematics, 153-163. http://dx.doi.org/10.1155/s1110757x03204101
|
[7]
|
Tremblay, R., Gaboury, S. and Fugère, B.-J. (2011) A New Class of Generalized Apostol-Bernoulli Polynomials and Some Analogues of the Srivastava-Pintér Addition Theorem. Applied Mathematics Letters, 24, 1888-1893.
http://dx.doi.org/10.1016/j.aml.2011.05.012
|
[8]
|
Luo, Q.-M., Guo, B.-N., Qui, F. and Debnath, L. (2003) Generalizations of Bernoulli Numbers and Polynomials. International Journal of Mathematics and Mathematical Sciences, 59, 3769-3776.
http://dx.doi.org/10.1155/S0161171203112070
|
[9]
|
El-Desouky, B.S. and Gomaa, R.S. (2014) A New Unified Family of Generalized Apostol-Euler, Bernoulli and Genocchi Polynomials. Applied Mathematics and Computation, 247, 695-702.
http://dx.doi.org/10.1016/j.amc.2014.09.002
|
[10]
|
Kurt, B. (2010) A Further Generalization of Bernoulli Polynomials and on 2D-Bernoulli Polynomials . Applied Mathematical Sciences, 47, 2315-2322.
|
[11]
|
Kurt, B. (2013) Some Relationships between the Generalized Apostol-Bernoulli and Apostol-Euler Polynomials. Turkish Journal of Analysis and Number Theory, 1, 54-58.
|
[12]
|
Ozden, H. and Simsek, Y. (2014) Modification and Unification of the Apostol-Type Numbers and Polynomials and Their Applications. Applied Mathematics and Computation, 235, 338-351. http://dx.doi.org/10.1016/j.amc.2014.03.004
|
[13]
|
Apostol, T.M. (1951) On the Lerch Zeta Function. Pacific Journal of Mathematics, 1, 161-167.
http://dx.doi.org/10.2140/pjm.1951.1.161
|
[14]
|
Dere, R., Simsek, Y. and Srivastava, H.M. (2013) A Unified Presentation of Three Families of Generalized Apostol Type Polynomials Based upon the Theory of the Umbral Calculus and the Umbral Algebra. Journal of Number Theory, 133, 3245-3263. http://dx.doi.org/10.1016/j.jnt.2013.03.004
|
[15]
|
Karande, B.K. and Thakare, N.K. (1975) On the Unification of Bernoulli and Euler Polynomials. Indian Journal of Pure and Applied Mathematics, 6, 98-107.
|
[16]
|
Luo, Q.-M. (2004) On the Apostol Bernoulli Polynomials. Central European Journal of Mathematics, 2, 509-515.
http://dx.doi.org/10.2478/BF02475959
|
[17]
|
Nörlund, N.E. (1924) Vörlesunge über differezerechnung. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-50824-0
|
[18]
|
Carlitz, L. (1962) Some Generalized Multiplication Formulae for the Bernoulli Polynomials and Related Functions. Monatshefte für Mathematik, 66, 1-8.
|
[19]
|
Comtet, L. (1972) Nombers de Stirling generaux et fonctions symetriques. Comptes Rendus de l’Académie des Sciences (Series A), 275, 747-750.
|
[20]
|
Gould, H.W. (1960) Stirling Number Representation Problems. Proceedings of the American Mathematical Society, 11, 447-451. http://dx.doi.org/10.1090/S0002-9939-1960-0114767-8
|
[21]
|
Srivastava, H.M. and Choi, J. (2001) Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordrecht. http://dx.doi.org/10.1007/978-94-015-9672-5
|
[22]
|
Charalambides, C.A. (2005) Generalized Stirling and Lah Numbers. In: Charalambides, C.A., Ed., Combinatorial Methods in Discrete Distributions, John Wiley & Sons, Inc., Hoboken, 121-158.
|
[23]
|
özarslan, M.A. and Bozer, M. (2013) Unified Bernstein and Bleimann-Butzer-Hahn Basis and Its Properties. Advances in Difference Equations, 2013, 55. http://dx.doi.org/10.1186/1687-1847-2013-55
|