[1]
|
Sonneveld, P. (1989) CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear Systems. SIAM Journal on Scienti fic and Statistical Computing, 10, 36-52. http://dx.doi.org/10.1137/0910004
|
[2]
|
Fletcher, R. (1976) Conjugate Gradient Methods for Indefinite Systems. In: Watson, G., Ed., Numerical Analysis Dundee 1975, Lecture Notes in Mathematics, Vol. 506, Springer-Verlag, Berlin, New York, 73-89.
|
[3]
|
Lanczos, C. (1952) Solution of Systems of Linear Equations by Minimized Iterations. Journal of Research of the National Bureau of Standards, 49, 33-53. http://dx.doi.org/10.6028/jres.049.006
|
[4]
|
Van der Vorst, H.A. (1992) Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 13, 631-644.
http://dx.doi.org/10.1137/0913035
|
[5]
|
Zhang, S.-L. (1997) GPBi-CG: Generalized Product-Type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific Computing, 18, 537-551. http://dx.doi.org/10.1137/s1064827592236313
|
[6]
|
Itoh, S. and Sugihara, M. (2010) Systematic Performance Evaluation of Linear Solvers Using Quality Control Techniques. In: Naono, K., Teranishi, K., Cavazos, J. and Suda, R., Eds., Software Automatic Tuning: From Concepts to State-of-the-Art Results, Springer, 135-152.
|
[7]
|
Itoh, S. and Sugihara, M. (2013) Preconditioned Algorithm of the CGS Method Focusing on Its Deriving Process. Transactions of the Japan SIAM, 23, 253-286. (in Japanese)
|
[8]
|
Hestenes, M.R. and Stiefel, E. (1952) Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards, 49, 409-435. http://dx.doi.org/10.6028/jres.049.044
|
[9]
|
Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., et al. (1994) Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM. http://dx.doi.org/10.1137/1.9781611971538
|
[10]
|
Van der Vorst, H.A. (2003) Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511615115
|
[11]
|
Meurant, G. (2005) Computer Solution of Large Linear Systems. Elsevier, Amsterdam.
|
[12]
|
Davis, T.A. The University of Florida Sparse Matrix Collection. http://www.cise.ufl.edu/research/sparse/matrices/
|
[13]
|
Matrix Market Project. http://math.nist.gov/MatrixMarket/
|
[14]
|
SSI Project, Lis. http://www.ssisc.org/lis/
|