Theoretical Study of the Triplet Electronic States of the BP Molecule

DOI: 10.4236/jmp.2015.68119   PDF   HTML   XML   2,625 Downloads   3,055 Views  

Abstract

The Complete Active Space Self Consistent Field (CASSCF) with Multi Reference Configuration Interaction (single and double excitation with Davidson correction) MRCI + Q method has been used to investigate the potential energy curves of the 17 low-lying triplet electronic states of the molecule BP. The harmonic vibrational frequency ωe, the inter-nuclear distance at equilibrium Re, the rotational constant Be, the electronic energy with respect to the minimum ground state energy Te, and the permanent dipole moment have been also calculated. A literature review shows a strong correlation between our investigated data and those previously published either theoretically or experimentally. This work introduces, for the first time, a study of 14 new electronic states. Our spectroscopic data can be a conducive to further work on BP molecule in both experimental and theoretical research.

Share and Cite:

Mansour, M. , El-Kork, N. and Korek, M. (2015) Theoretical Study of the Triplet Electronic States of the BP Molecule. Journal of Modern Physics, 6, 1156-1161. doi: 10.4236/jmp.2015.68119.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Huber, K.P. and Herzberg, G. (1979) Molecular Spectra and Molecular Structure. Vol. 4, Van Nostrand Reinhold, New York. http://dx.doi.org/10.1007/978-1-4757-0961-2
[2] Hirota, E. (1992) Chemical Reviews, 92, 141. http://dx.doi.org/10.1021/cr00009a006
[3] Zhang, G.F. (1995) Infrared Technology, 5, 23.
[4] Min, X.M., Cai, K.F. and Nan, C.W. (1998) Chinese Journal of Computation Physics, 15, 445.
[5] Gingerich, K.A. (1972) The Journal of Chemical Physics, 56, 4239. http://dx.doi.org/10.1063/1.1677849
[6] Boldyrev, A.I. and Simons, J. (1993) The Journal of Physical Chemistry, 97, 6149-6154.
http://dx.doi.org/10.1021/j100125a011
[7] Bader, R.F. (1990) Atom in Molecules: A Quantum Theory. Oxford University Press, Oxford.
[8] Bader, R.F. (1994) Physical Review B, 49, 13348. http://dx.doi.org/10.1103/PhysRevB.49.13348
[9] Pendás, A.M., Blanco, M.A., Costales, A., Mori-Sánchez, P. and Luaña, P. (1999) Physical Review Letters, 83, 1930. http://dx.doi.org/10.1103/PhysRevLett.83.1930
[10] Mori-Sánchez, P. and Luaña, V. (2001) Physical Review B, 63, 125103.
http://dx.doi.org/10.1103/PhysRevB.63.125103
[11] Mori-Sánchez, P. (2002) Densidad electrónica y enlace químico. De la molécula al cristal. Ph.D. Thesis, Universidad de Oviedo, Asturias.
[12] Miguel, B., Omar, S., Mori-Sánchez, P. and García de la Vega, J.M. (2003) Chemical Physics Letters, 381, 720-724. http://dx.doi.org/10.1016/j.cplett.2003.09.153
[13] Aguado, A., García de la Vega, J.M. and Miguel, B. (1997) Journal of the Chemical Society, 93, 29-32.
[14] García de la Vega, J.M. and Miguel, B. (2000) Theoretical Chemistry Accounts, 104, 189-194.
http://dx.doi.org/10.1007/s002140000134
[15] Gan, Z.T., Grant, D.J., Harrison, R.J. and Dixon, D.A. (2006) The Journal of Chemical Physics, 125, Article ID: 124311. http://dx.doi.org/10.1063/1.2335446
[16] Linguerri, R., Komiha, N., Oswald, R., Mitrushchenkov, A. and Rosmus, P. (2008) Chemical Physics, 346, 1-7. http://dx.doi.org/10.1016/j.chemphys.2008.01.012
[17] Wang, W.B., Kun, Y., Zhang, X.M. and Liu, Y.F. (2014) Acta Physica Sinica, 63, Article ID: 073302.
[18] Shinsuke, H. (2008) Theoretical Study of Electronic Structure and Spectroscopy of Molecules Containing Metallic Atoms. Ph.D. Thesis, Universite Paris-Est, Paris.
[19] Werner, H.J. and Knowles, P.J. (1988) The Journal of Chemical Physics, 89, 5803.
http://dx.doi.org/10.1063/1.455556
[20] Knowles, P.J. and Werner, H.-J. (1988) Chemical Physics Letters, 145, 514-522.
http://dx.doi.org/10.1016/0009-2614(88)87412-8
[21] Langhoff, S.R. and Davidson, E.R. (1974) International Journal of Quantum Chemistry, 8, 61-72.
http://dx.doi.org/10.1002/qua.560080106
[22] Richartz, A., Buenker, R.J. and Peyerimhoff, S.D. (1978) Chemical Physics, 28, 305-312.
http://dx.doi.org/10.1016/0301-0104(78)80007-X
[23] Werner, H.J., Knowles, P.J., Lindh, R., Manby, F.R., Schütz, M., Celani, P., Korona, T., Rauhut, G., Amos, R.D., Bernhardsson, A., Berning, A., Cooper, D.L., Deegan, M.J.O., Dobbyn, A.J., Eckert, F., Hampel, C., Hetzer, G., Lloyd, A.W., McNicholas, S.J., Meyer, W., Mura, M.E., Nicklass, A., Palmieri, P., Pitzer, R., Schumann, U., Stoll, H., Stone, A.J., Tarroni, R. and Thorsteinsson, T. (2012) MOLPRO: A Package of Ab-Initio Programs.
[24] Allouche, A.R. (2010) Journal of Computational Chemistry, 32, 174-182.
http://dx.doi.org/10.1002/jcc.21600

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.