Theoretical Study of the Triplet Electronic States of the BP Molecule

Abstract

The Complete Active Space Self Consistent Field (CASSCF) with Multi Reference Configuration Interaction (single and double excitation with Davidson correction) MRCI + Q method has been used to investigate the potential energy curves of the 17 low-lying triplet electronic states of the molecule BP. The harmonic vibrational frequency ωe, the inter-nuclear distance at equilibrium Re, the rotational constant Be, the electronic energy with respect to the minimum ground state energy Te, and the permanent dipole moment have been also calculated. A literature review shows a strong correlation between our investigated data and those previously published either theoretically or experimentally. This work introduces, for the first time, a study of 14 new electronic states. Our spectroscopic data can be a conducive to further work on BP molecule in both experimental and theoretical research.

Share and Cite:

Mansour, M. , El-Kork, N. and Korek, M. (2015) Theoretical Study of the Triplet Electronic States of the BP Molecule. Journal of Modern Physics, 6, 1156-1161. doi: 10.4236/jmp.2015.68119.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Huber, K.P. and Herzberg, G. (1979) Molecular Spectra and Molecular Structure. Vol. 4, Van Nostrand Reinhold, New York. http://dx.doi.org/10.1007/978-1-4757-0961-2
[2] Hirota, E. (1992) Chemical Reviews, 92, 141. http://dx.doi.org/10.1021/cr00009a006
[3] Zhang, G.F. (1995) Infrared Technology, 5, 23.
[4] Min, X.M., Cai, K.F. and Nan, C.W. (1998) Chinese Journal of Computation Physics, 15, 445.
[5] Gingerich, K.A. (1972) The Journal of Chemical Physics, 56, 4239. http://dx.doi.org/10.1063/1.1677849
[6] Boldyrev, A.I. and Simons, J. (1993) The Journal of Physical Chemistry, 97, 6149-6154.
http://dx.doi.org/10.1021/j100125a011
[7] Bader, R.F. (1990) Atom in Molecules: A Quantum Theory. Oxford University Press, Oxford.
[8] Bader, R.F. (1994) Physical Review B, 49, 13348. http://dx.doi.org/10.1103/PhysRevB.49.13348
[9] Pendás, A.M., Blanco, M.A., Costales, A., Mori-Sánchez, P. and Luaña, P. (1999) Physical Review Letters, 83, 1930. http://dx.doi.org/10.1103/PhysRevLett.83.1930
[10] Mori-Sánchez, P. and Luaña, V. (2001) Physical Review B, 63, 125103.
http://dx.doi.org/10.1103/PhysRevB.63.125103
[11] Mori-Sánchez, P. (2002) Densidad electrónica y enlace químico. De la molécula al cristal. Ph.D. Thesis, Universidad de Oviedo, Asturias.
[12] Miguel, B., Omar, S., Mori-Sánchez, P. and García de la Vega, J.M. (2003) Chemical Physics Letters, 381, 720-724. http://dx.doi.org/10.1016/j.cplett.2003.09.153
[13] Aguado, A., García de la Vega, J.M. and Miguel, B. (1997) Journal of the Chemical Society, 93, 29-32.
[14] García de la Vega, J.M. and Miguel, B. (2000) Theoretical Chemistry Accounts, 104, 189-194.
http://dx.doi.org/10.1007/s002140000134
[15] Gan, Z.T., Grant, D.J., Harrison, R.J. and Dixon, D.A. (2006) The Journal of Chemical Physics, 125, Article ID: 124311. http://dx.doi.org/10.1063/1.2335446
[16] Linguerri, R., Komiha, N., Oswald, R., Mitrushchenkov, A. and Rosmus, P. (2008) Chemical Physics, 346, 1-7. http://dx.doi.org/10.1016/j.chemphys.2008.01.012
[17] Wang, W.B., Kun, Y., Zhang, X.M. and Liu, Y.F. (2014) Acta Physica Sinica, 63, Article ID: 073302.
[18] Shinsuke, H. (2008) Theoretical Study of Electronic Structure and Spectroscopy of Molecules Containing Metallic Atoms. Ph.D. Thesis, Universite Paris-Est, Paris.
[19] Werner, H.J. and Knowles, P.J. (1988) The Journal of Chemical Physics, 89, 5803.
http://dx.doi.org/10.1063/1.455556
[20] Knowles, P.J. and Werner, H.-J. (1988) Chemical Physics Letters, 145, 514-522.
http://dx.doi.org/10.1016/0009-2614(88)87412-8
[21] Langhoff, S.R. and Davidson, E.R. (1974) International Journal of Quantum Chemistry, 8, 61-72.
http://dx.doi.org/10.1002/qua.560080106
[22] Richartz, A., Buenker, R.J. and Peyerimhoff, S.D. (1978) Chemical Physics, 28, 305-312.
http://dx.doi.org/10.1016/0301-0104(78)80007-X
[23] Werner, H.J., Knowles, P.J., Lindh, R., Manby, F.R., Schütz, M., Celani, P., Korona, T., Rauhut, G., Amos, R.D., Bernhardsson, A., Berning, A., Cooper, D.L., Deegan, M.J.O., Dobbyn, A.J., Eckert, F., Hampel, C., Hetzer, G., Lloyd, A.W., McNicholas, S.J., Meyer, W., Mura, M.E., Nicklass, A., Palmieri, P., Pitzer, R., Schumann, U., Stoll, H., Stone, A.J., Tarroni, R. and Thorsteinsson, T. (2012) MOLPRO: A Package of Ab-Initio Programs.
[24] Allouche, A.R. (2010) Journal of Computational Chemistry, 32, 174-182.
http://dx.doi.org/10.1002/jcc.21600

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.