[1]
|
Ockendon, J.R. and Taylor, A.B. (1971) The Dynamics of a Current Collection System for an Electric Locomotive. Proceedings of the Royal Society of London A, 322, 447-468. http://dx.doi.org/10.1098/rspa.1971.0078
|
[2]
|
Li, D. and Liu, M. (2005) Runge-Kutta Methods for the Multi-pantograph Delay Equation. Applied Mathematics and Computation, 163, 383-395. http://dx.doi.org/10.1016/j.amc.2004.02.013
|
[3]
|
Evans, D.J. and Raslan, K.R. (2005) The Adomian Decomposition Method for Solving Delay Differential Equation. International Journal of Computer Mathematics, 82, 49-54. http://dx.doi.org/10.1080/00207160412331286815
|
[4]
|
Keskin, Y., at al. (2007) Approximate Solutions of Generalized Pantograph Equations by the Differential Transform Method. International Journal of Nonlinear Sciences and Numerical, 8, 159-164.
http://dx.doi.org/10.1515/IJNSNS.20078.2.159
|
[5]
|
Sezer, M. and Dascioglu, A.A. (2007) A Taylor Method for Numerical Solution of Generalized Pantograph Equations with Linear Functional Argument. Journal of Computational and Applied Mathematics, 200, 217-225.
http://dx.doi.org/10.1016/j.cam.2005.12.015
|
[6]
|
Yu, Z. (2008) Variational ?teration Method for Solving the Multi-Pantograph Delay Equation. Physics Letters A, 372, 6475-6479. http://dx.doi.org/10.1016/j.physleta.2008.09.013
|
[7]
|
Sezer, M., Yalcinbas, S. and Sahin, N. (2008) Approximate Solution of Multi-Pantograph Equation with Variable Coefficients. Journal of Computational and Applied Mathematics, 214, 406-416.
http://dx.doi.org/10.1016/j.cam.2007.03.024
|
[8]
|
Geng, F.Z. and Qian, S.P. (2014) Solving Singularly Perturbed Multi-Pantograph Delay Equations Based on the Reprociding Kernel Medhod. Abstract and Applied Analysis, 2014, 6 p. http://dx.doi.org/10.1155/2014/794716
|
[9]
|
Cherruault, Y., Adomian, G., Abbaoui, K. and Rach, R. (1995) Further Remarks on Convergence of Decomposition Method. International Journal of Bio-Medical Computing, 38, 89-93.
http://dx.doi.org/10.1016/0020-7101(94)01042-Y
|
[10]
|
Ismail, H.N., Raslan, K.R. and Salem, G.S. (2004) Solitary Wave Solutions for the General KdV Equation by Adomian Decomposition Method. Applied Mathematics and Computation, 154, 17-29.
http://dx.doi.org/10.1016/S0096-3003(03)00686-6
|
[11]
|
El-Safty, A., Salim, M.S. and El-Khatib, M.A. (2003) Convergent of the Spline Functions for Delay Dynamic System. International Journal of Computer Mathematics, 80, 509-518. http://dx.doi.org/10.1080/0020716021000014204
|
[12]
|
Rostam, K., Saeed, B. and Rahman, M. (2011) Differential Transform Method for Solving System of Delay Differential Equation. Australian Journal of Basic and Applied Sciences, 5, 201-206.
|
[13]
|
Adomian, G. (1994) Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Boston. http://dx.doi.org/10.1007/978-94-015-8289-6
|
[14]
|
Adomian, G. and Rach, R. (1993) Analytic Solution of Nonlinear Boundary-Value Problems in Several Dimensions by Decomposition. Journal of Mathematical Analysis and Applications, 174, 118-137.
http://dx.doi.org/10.1006/jmaa.1993.1105
|
[15]
|
Zhou, J.K. (1986) Differential Transform and Its Application for Electrical Circuits. Huazhong University Press, Wuhan.
|
[16]
|
Feng, X. (2013) An Analytic Study on the Multi-Pantograph Delay Equations with Variable Coefficients. Bulletin Mathematique de la society des Sciences mathématiques de Roumanie Tome, 56, 205-215.
http://ssmr.ro/bulletin/pdf/56-2/articol_7.pdf
|
[17]
|
Ayaz, F. (2004) Applications of Differential Transform Method to Differential-Algebraic Equations. Applied Mathematics and Computation, 152, 649-657. http://dx.doi.org/10.1016/S0096-3003(03)00581-2
|
[18]
|
Kurnaz, A. and Oturanc, G. (2005) The Differential Transform Approximation for the System Ordinary Differential Equations. International Journal of Computer Mathematics, 82, 709-719.
http://dx.doi.org/10.1080/00207160512331329050
|
[19]
|
Cherruault, Y. (1989) Convergence of Adomian’s Method. Kybernetes, 18, 31-38. http://dx.doi.org/10.1108/eb005812
|
[20]
|
Hosseini, M.M. and Nasabzadeh, H. (2006) On the Convergence of Adomian Decomposition Method. Applied Mathematics and Computation, 182, 536-543. http://dx.doi.org/10.1016/j.amc.2006.04.015
|
[21]
|
Liu, M.Z. and Li, D. (2004) Properties of Analytic Solution and Numerical Solution of Multi-Pantograph Equation. Applied Mathematics and Computation, 155, 853-871. http://dx.doi.org/10.1016/j.amc.2003.07.017
|