Use of Ultrasound Bath in the Extraction and Quantification of Ester-Linked Phenolic Acids in Tropical Forages


A method was developed for the analysis of ester-linked phenolic acids in forage samples using extraction by an ultrasound-assisted treatment and quantification by HPLC with a UV-VIS detector. A reversed-phase C18 column was used for developing the method and the optimal condition was established with isocratic elution using acetonitrile/methanol/H3PO4 pH 2.08 (13:12.5:74.5) as the mobile phase. To reduce the time of sample processing, the extraction of ester-linked phenolic acids was studied using ultrasound bath and the results were then compared with those from an extraction usual using alkaline hydrolysis (20°C for 24 h). The method was valued through external and internal calibration. Internal calibration using o-coumaric acid as internal standard and m-coumaric acid as surrogate internal standard showed better results. The detection limits were of 0.09 and 0.04 mg●L-1 for p-coumaric and ferulic acids, respectively. The proposed method showed a good linear dynamic range (3.00 - 30.00 mg●L-1) for the analytes. The usefulness of the methodology was demonstrated by addition-recovery experiments using forage samples and values were in the 83 to 99% range. The extraction of ester-linked phenolic acids by 120 minutes of ultrasound bath was faster and more reproducible than alkaline hydrolysis (20°C for 24 h).

Share and Cite:

M. Santos, A. Vitor, J. Carneiro, D. Paciullo, R. Matos and M. Matos, "Use of Ultrasound Bath in the Extraction and Quantification of Ester-Linked Phenolic Acids in Tropical Forages," American Journal of Analytical Chemistry, Vol. 2 No. 3, 2011, pp. 344-351. doi: 10.4236/ajac.2011.23042.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. Hatfield and R. S. Fukushima, “Can Lignin be Accurately Measured?” Crop Science, Vol. 45, No. 3, 2005, pp. 832-839. doi:10.2135/cropsci2004.0238
[2] C. D. Stalikas, “Extraction, Separation, and Detection Methods for Phenolic Acids and Flavonoids,” Journal of Separation Science, Vol. 30, No. 18, 2007, pp. 3268-3295. doi:10.1002/jssc.200700261
[3] H. G. Jung, “Forage Lignins and their Effects on Fiber Digestibility,” Agronomy Journal, Vol. 81, No. 1, 1989, pp. 33-38. doi:10.2134/agronj1989.00021962008100010006x
[4] R. C. Sun, X. F. Sun and S. H. Zhang, “Quantitative Determination of Hydroxycinnamic Acids in Wheat, Rice, Rye, and Barley Straws, Maize Stems, Oil Palm Frond Fiber, and Fast-Growing Poplar Wood,” Journal of Agricultural and Food Chemistry, Vol. 49, No. 11, 2001, pp. 5122-5129. doi:10.1021/jf010500r
[5] C. J. F. A. Brito, A. R. Rodella and F. C. Deschamps, “Perfil Químico da Parede Celular e Suas Implica??es na Digestibilidade da Brachiara Brizantha e Brachiara humidicola,” Revista Brasileira de Zootecnia, Vol. 32, No. 6, 2003, pp. 1835-1844. doi:10.1590/S1516-35982003000800005
[6] M. D. Casler and H. G. Jung, “Relationships of Fibre, Lignin, and Phenolics to in Vitro Fibre Digestibility in Three Perennial Grasses,” Animal Feed Science Technology, Vol. 125, 2006, pp. 151-161. doi:10.1016/j.anifeedsci.2005.05.015
[7] F. C. Deschamps and L. P. Ramos, “Método para a Determina??o de ácidos Fenólicos na Parede Celular de Forragens,” Revista Brasileira de Zootecnia, Vol. 31, No. 4, 2002, pp. 1634-1639. doi:10.1590/S1516-35982002000700005
[8] R. D. P. Hartley, “P-Coumaric and Ferulic Acid Components of Cell Wall of Rygrass and their Relationship with Lignin and Digestibility,” Journal of the Science of Food and Agriculture, Vol. 23, No. 11, 1972, pp. 1347-1354. doi:10.1002/jsfa.2740231110
[9] H. G. Jung, “Maize Stem Tissues: Ferulate Deposition in Developing Internode Cell Walls,” Phytochemistry, Vol. 63, No. 5, 2003, pp. 543-549. doi:10.1016/S0031-9422(03)00221-8
[10] H. G. Jung and D. A. Deetz, “Cell Wall Lignification and Degradability”. In: H.G. Jung, et al. (Eds.), Forage Cell Wall Structure and Digestibility, ASA-CSSA-SSSA, Madison, USA, 1993, pp. 315-346.
[11] J. R. Robbins, “Phenolic Acids in Foods: An Overview of Analytical Methodology,” Journal of Agricultural and Food Chemistry, Vol. 51, No. 10, 2003, pp. 2866-2887. doi:10.1021/jf026182t
[12] A. Carrasco-Pancorbo, A. M. Gómez-Caravaca, L. Cerretani, A. Bendini, A. Segura-Carretero and A. Fernández-Gutiérrez, “Rapid Quantification of the Phenolic fraction of Spanish Virgin Olive Oils by Capillary Electrophoresis with UV Detection,” Journal of Agricultural and Food Chemistry, Vol. 54, No. 21, 2006, pp. 7984-7991. doi:10.1021/jf0617925
[13] S. Ehala, M. Vaher and M. Kaljurand, “Characterization of Phenolic Profiles of Northern European Berries by Capillary Electrophoresis and Determination of their Antioxidant Activity,” Journal of Agricultural and Food Chemistry, Vol. 53, No. 16, 2005, pp. 6484-6490. doi:10.1021/jf050397w
[14] D. L. D. Lima, A. C. Duarte and V. I. Esteves, “Optimization of Phenolic Compounds Analysis by Capillary Electrophoresis,” Talanta, Vol. 72, No. 4, 2007, pp. 1404-1409. doi:10.1016/j.talanta.2007.01.049
[15] Y. Y. Peng, J. N. Ye and J. L. Kong, “Determination of Phenolic Compounds in Perilla Frutescens L. by Capillary Electrophoresis with Electrochemical Detection,” Journal of Agricultural and Food Chemistry, Vol. 53, No. 21, 2005, pp. 8141-8147. doi:10.1021/jf051360e
[16] A. Canini, D. Alesiani, G. D’Arcangelo and P. Tagliatesta, “Gas Chromatography—Mass Spectrometry Analysis of Phenolic Compounds from Carica Papaya L. Leaf,” Journal of Food Composition and Analysis, Vol. 20, No. 7, 2007, pp. 584-590. doi:10.1021/jf051360e
[17] Y. C. Fiamegos, C. G. Nanos, J. Vervoort and C. D. Stalikas, “Analytical Procedure for the In-Vial Derivatization—Extraction of Phenolic Acids and Flavonoids in Methanolic and Aqueous Plant Extracts Followed by Gas Chromatography with Mass-Selective Detection,” Journal of Chromatography A , Vol. 1041, No. 1-2, 2004, pp. 11-18. doi:10.1016/j.chroma.2004.04.041
[18] J. H. Grabber, J. Ralph and R. D. Hatfield, “Cross-Linking of Maize Walls by Ferulate Dimerization and Incorporation into Lignin,” Journal of Agricultural and Food Chemistry, Vol. 48, No. 12, 2000, pp. 6106-6113. doi:10.1021/jf0006978
[19] M. Plessi, D. Bertelli and F. Miglietta, “Extraction and Identification by GC-MS of Phenolic Acids in Traditional Balsamic Vinegar from Modena,” Journal of Food Composition and Analysis, Vol. 19, No. 1, 2006, pp. 49-54. doi:10.1016/j.jfca.2004.10.008
[20] G. Sarath, L. M. Baird, K. P. Vogel and R. B. Mitchell, “Internode Structure and Cell Wall Composition in Maturing Tillers of Switchgrass (Panicum Virgatum. L),” Bioresource Technology, Vol. 98, No. 16, 2007, pp. 2985-2992. doi:10.1016/j.biortech.2006.10.020
[21] Z. Spacil, L. Novakova and P. Solich, “Analysis of Phenolic Compounds by High Performance Liquid Chromatography and Ultra Performance Liquid Chromatography,” Talanta, Vol. 76, 2008, pp. 189-199. doi:10.1016/j.talanta.2008.02.021
[22] K. Chitindingu, A. R. Ndhlala, C. Chapano, M. A. Benhura and M. Muchuweti, “Phenolic Compound Content, Profiles and Antioxidant Activities of Amaranthus Hybridus (Pigweed), Brachiaria Brizantha (Upright Brachiaria) and Panicum Maximum (Guinea Grass),” Journal of Food Biochemistry, Vol. 31, No. 2, 2007, pp. 206-216. doi:10.1111/j.1745-4514.2007.00108.x
[23] S. Gómez-Alonso, E. García-Romero and I. Hermosín-Gutiérrez, “HPLC Analysis of Diverse Grape and Wine Phenolics using Direct Injection and Multidetection by DAD and Fluorescence,” Journal of Food Composition and Analysis, Vol. 20, No. 7, 2007, pp. 618-626. doi:10.1016/j.jfca.2007.03.002
[24] Z. L. Huang, B. W. Wang, D. H. Eaves, J. M. Shikany and R. D. Pace, “Phenolic Compound Profile of Selected Vegetables Frequently Consumed by African Americans in the Southeast United States,” Food Chemistry, Vol. 103, No. 4, 2007, pp. 1395-1402. doi:10.1016/j.foodchem.2006.10.077
[25] C. Mertz, A. Gancel, Z. Gunata, P. Alter, C. Dhuique-Mayer, F. Vaillant, A. M. Perez, J. Ruales and P. Brat, “Phenolic Compounds, Carotenoids and Antioxidant Activity of Three Tropical Fruits,” Journal of Food Composition and Analysis, Vol. 22, No. 5, 2009, pp. 381-387. doi:10.1016/j.jfca.2008.06.008
[26] M. A. M. Rodrigues, C. M. Guedes, J. W. Cone, A. H. van Gelder, L. M. M. Ferreira and C. A. Sequeira, “Effects of Phenolic Acid Structures on Meadow Hay Digestibility,” Animal Feed Science Technology, Vol. 136, 2007, pp. 297-311. doi:10.1016/j.anifeedsci.2006.09.009
[27] . C. I. G. Tuberoso, A. Kowalczyk, E. Sarritzu and P. Cabras, “Determination of Antioxidant Compounds and Antioxidant Activity in Commercial Oilseeds for Food Use,” Food Chemistry, Vol. 103, No. 4, 2007, pp. 1494-1501. doi:10.1016/j.foodchem.2006.08.014
[28] R. Al-Merey, M. S. Al-Masri and R. Bozou, “Cold Ultrasonic Acid Extraction of Copper, Lead and Zinc from Soil Samples,” Analytica Chimica Acta, Vol. 452, No. 1, 2002, pp. 143-148. doi:10.1016/S0003-2670(01)01431-3
[29] K. Ashley, R. N. Andrews, L. Cavazos and M. Demange, “Ultrasonic Extraction as a Sample Preparation Technique for Elemental Analysis by Atomic Spectrometry,” Journal of Analytical Atomic Spectrometry, Vol. 16, 2001, pp. 1147-1153. doi:10.1039/b102027g
[30] A. Elik, “Ultrasound assisted pseudo-digestion of street dust samples prior to determination by atomic absorption spectrometry,” Talanta, Vol. 66, No. 4, 2005, pp. 882-888. doi:10.1016/j.talanta.2004.12.050
[31] A. Marin, C. Lopez-Gonzales and C. Barbas, “Development and Validation of Extraction Methods for Determination of Zinc and Arsenic Speciation in Soils Using Focused Ultrasound—Application to Heavy Metal Study in Mud and Soils,” Analytica Chimica Acta, Vol. 442, 2001, pp. 305-318.
[32] S. C. C. Arruda, A. P. M. Rodriguez and M. A. Z. Arruda, “Ultrasound-Assisted Extraction of Ca, K and Mg from in Vitro Citrus Culture,” Journal of the Brazilian Chemical Society, Vol. 14, No. 3, 2003, pp. 470-474. doi:10.1590/S0103-50532003000300023
[33] M. Liva, R. Mu?oz-Olivas and C. Camara, “Determination of Cd in Sonicate Slurries and Leachates of Biological and Environmental Materials by FI-CV-AAS,” Talanta, Vol. 51, No. 2, 2000, pp. 381-387. doi:10.1016/S0039-9140(99)00292-1
[34] C. C. Nascentes, M. Korn and M. A. S. Arruda, “A Fast Ultrasound-Assisted Extraction of Ca, Mg, Mn and Zn from Vegetables,” Microchemical Journal, Vol. 69, No. 1, 2001, pp. 37-43. doi:10.1016/S0026-265X(00)00192-2
[35] J. C. Cypriano, M. A. C. Matos and R. C. Matos, “Ultrasound-Assisted Treatment of Palm Oil Samples for the Determination of Copper and Lead by Stripping Chronopotentiometry,” Microchemical Journal, Vol. 90, No. 1, 2008, pp. 26-30. doi:10.1016/j.microc.2008.03.001
[36] E. A. Zakharova, V. I. Deryabina and G. B. Slepchenko, “Optimization of the Voltammetric Determination of Arsenic in Foodstuffs,” Jounal of Analytical Chemistry, Vol. 60, No. 6, 2005, pp. 503-507. doi:10.1007/s10809-005-0129-3
[37] P. J. Van Soest, “Nutritional Ecology of the Ruminant”, Cornell University Press, New York, 1994.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.