Assessment of Saltwater Intrusion and Discharges to a Wetland with a 3D Transient Variable Density Flow Model: The Coastal Plane Oropesa-Torreblanca Aquifer, Spain


The proper characterization of coastal aquifers requires modeling variable density flow effects. However, most models estimate processes as saline intrusion based on 2D models with constant density and are rarely calibrated to honor salinity measurements. These facts limit the model predictions reliability, affecting the estimated hydrodynamic parameters, external stresses, and other model outputs that can be critical for planning or management decisions. This paper describes the re-assessment of a coastal aquifer model (Oropesa-Torreblanca, eastern Spain) subjected to moderate-to-high saline intrusion with a transient 3D variable density flow model. Previous models were based on 2D low-resolution grids without variable density effects. The new model honors the observed trends of both piezometric and salinity data. Results show the importance of the variable density effects having on critical outputs as sea intrusion and the discharges to a local wetland of high environmental value. The widespread intrusion process and its current stabilization are confirmed but, compared to previous models, the annual average intrusion is 156% higher, discharge to the wetland increases 30%, and the inflows from neighboring formations increase 22%. The more accurate aquifer models, as well as the new discharges and intrusion estimations, are important contributions for future water and environmental planning decisions in the area.

Share and Cite:

Sanz-Garrido, I. and Capilla, J. (2015) Assessment of Saltwater Intrusion and Discharges to a Wetland with a 3D Transient Variable Density Flow Model: The Coastal Plane Oropesa-Torreblanca Aquifer, Spain. Journal of Water Resource and Protection, 7, 749-768. doi: 10.4236/jwarp.2015.79062.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Webb, M.D. and Howard, K.W.F. (2011) Modeling the Transient Response of Saline Intrusion to Rising Sea-Levels. Ground Water, 49, 560-569.
[2] Todd, D.K. (1974) Salt-Water Intrusion and Its Control. Journal of American Water Works Association, 66, 180-187.
[3] Chang, S.W. and Clement, T.P. (2012) Experimental and Numerical Investigation of Saltwater Intrusion Dynamics in Flux-Controlled Groundwater Systems. Water Resources Research, 48, 1-10.
[4] Lahm, T.D., Bair, E.S. and Vander Kwaak, J. (1998) Role of Salinity-Derived Variable-Density Flow in the Displacement of Brine from a Shallow, Regionally Extensive Aquifer. Water Resources Research, 34, 1469-1480.
[5] Capilla, J.E., Gómez-Hernández, J.J. and Sahuquillo, A. (1998) Stochastic Simulation of Transmissivity Fields Conditional to Both Transmissivity and Piezometric Head Data—3. Application to the Culebra Formation at the Waste Isolation Pilot Plan (WIPP), New Mexico, USA. Journal of Hydrology, 207, 254-269.
[6] Morell, I. (1985) Caracterización hidroquímica de la intrusión marina en la Plana de Oropesa-Torreblanca (Castellón). Ph.D. Thesis, University of Granada, Granada.
[7] Instituto Geológico y Minero de Espana, IGME (2009) Estudio piloto para el cálculo de descargas ambientales al mar en las masas de agua subterránea costeras de la provincia de Castellón (Cuenca del Júcar). Madrid, Spain.
[8] Renau-Prunonosa, A. (2012) Nueva herramienta para la gestión de las aguas subterráneas en acuíferos costeros. Volumen ecológico de remediación (VER). Metodología y aplicación a la Plana de Oropesa-Torreblanca (MASub 080.110). Ph.D. Thesis, Universidad Jaume I, Castellón de la Plana.
[9] RAMSAR Convention Bureau (1990) Directory of Wetlands of International Importance Sites Designated for the List of Wetlands of International Importance.
[10] Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the Conservation of Wild Birds.
[11] Quereda, J. (1975) El Pla de l’Arc: Benlloch y Cabanes. In: Millars: Revista del Colegio Universitario de Castellón de la Plana, Volume 2, Col·legi Universitari de Castelló, Castelló, 95-125.
[12] Quereda, J. (1985) Geomorfologia. In: La provincia de Castellón de la Plana. Tierras y gentes, Caja de Ahorros y Monte de Piedad de Castellón, Castellón, 25-47.
[13] SegarraiJulve, X. (1985) Marjaleria de Cabanes-Torreblanca. Treballs de la Societat Catalana de Biologia, 37, 131-236.
[14] Castanyi Alvaro, J. (2004) El carricerín real (Acrocephalus melanopogon) en el P.N. del Prat de Cabanes—Torreblanca. Ph.D. Thesis, Universitat de Valencia, Valencia.
[15] Alfonso, C. (2002) Entrevista a Francisco Cabezas Calvo-Rubio, Subdirector General de Planificación Hidrológica: Evaluación Ambiental Estratégica del PHN. Revista Ambienta, Volume 9.
[16] Renau-Prunonosa, A., Morell, I., Pulido, D. and Mateu J. (2014) Ecological Remediation Volume (ERV) in Coastal Aquifers Affected by Seawater Intrusion. Methodology and Application in the Oropesa-Torreblanca Plain (Spain). In: Mathematics of Planet Earth: Proceedings of the 15th Annual Conference of the International Association for Mathematical Geosciences, Springer, Heidelberg, 333-337.
[17] Jucar River Basin Authority (2015)
[18] Sanz, I. (2013) Modelo matemático para la caracterización e investigación de la interfaz salina del acuífero de la Plana litoral de Oropesa-Torreblanca (Unidad hidrogeológica 8.11). Master’s Thesis, Technical University of Valencia, Valencia.
[19] Harbaugh, A.W., Banta, E.R., Hill, M.C. and McDonald, M.G. (2000) MODFLOW 2000, the US Geological Survey Modular Ground-Water Model: User Guide to Modularization Concepts and the Ground-Water Flow Process. USGS Open File Report 00-92, USGS, USA.
[20] Guo, W.X. and Langevin Christian, D. (2002) User’s Guide to SEAWAT: A Computer Program for Simulation of Three-Dimensional Variable-Density Groundwater Flow. USGS Techniques of Water Resources Investigations Book 6 Chapter A7, USA.
[21] Chiang, W.-H. and Kinzelbach, W. (2003) 3D-Groundwater Modeling with PMWIN: A Simulation System for Modeling Groundwater Flow and Pollution. Springer, Berlin.
[22] Zheng, C. and Wang, P. (1999) MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User’s Guide. US Army Corps of Engineers, Washington, DC.
[23] Baxter, G.P. and Wallace, C.C. (1916) Changes in Volume upon Solution in Water of Halogen Salts of Alkali Metals. American Chemical Society Journal, 38, 70-105.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.