Share This Article:

A “Hard to Die” Series Expansion and Lucas Polynomials of the Second Kind

Abstract Full-Text HTML XML Download Download as PDF (Size:230KB) PP. 1235-1240
DOI: 10.4236/am.2015.68116    2,800 Downloads   3,173 Views  

ABSTRACT

We show how to use the Lucas polynomials of the second kind in the solution of a homogeneous linear differential system with constant coefficients, avoiding the Jordan canonical form for the relevant matrix.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Natalini, P. and Ricci, P. (2015) A “Hard to Die” Series Expansion and Lucas Polynomials of the Second Kind. Applied Mathematics, 6, 1235-1240. doi: 10.4236/am.2015.68116.

References

[1] Gantmacher, F.R. (1960) Matrix Theory. Chelsea Pub. Co., New York.
[2] Hirsch, M.W., Smale, S. and Devaney, R.L. (2003) Differential Equations, Dynamical Systems & an Introduction to Chaos. Academic Press, Elsevier, London.
[3] Raghavacharyulu, I.V.V. and Tekumalla, A.R. (1972) Solution of the Difference Equations of Generalized Lucas Polynomials. Journal of Mathematical Physics, 13, 321-324.
http://dx.doi.org/10.1063/1.1665978
[4] Bruschi, M. and Ricci, P.E. (1982) An Explicit Formula for f(A) and the Generating Function of the Generalized Lucas Polynomials. SIAM Journal on Mathematical Analysis, 13, 162-165.
http://dx.doi.org/10.1137/0513012
[5] Bruschi, M. and Ricci, P.E. (1980) I polinomi di Lucas e di Tchebycheff in più variabili. Rendiconti di Matematica e delle sue Applicazioni, 13, 507-530.
[6] Ricci, P.E. (1976) Sulle potenze di una matrice. Rendiconti di Matematica e delle sue Applicazioni, 9, 179-194.
[7] Lucas, é. (1891) Théorie des Nombres. Gauthier-Villars, Paris.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.