[1]
|
Olmedo, O., Zhang, J., Wechsler, H., Poland, A. and Borne, K. (2008) Automatic Detection and Tracking of Coronal Mass Ejections (CMEs) in Coronagraph Time Series. Solar Physics, 248, 485-499. http://dx.doi.org/10.1007/s11207-007-9104-5
|
[2]
|
Miller, B., Kantchelian, A., Afroz, S., Bachwani, R., Dauber, E., Huang, L., Tschantz, M.C., Joseph, A.D. and Tygar J.D. (2014) Adversarial Active Learning. Proceeding of the 2014 Workshop on Artificial Intelligent and Security Workshop AI, Scottsdale, 3-7 November 2014, 3-14. http://dx.doi.org/10.1145/2666652.2666656
|
[3]
|
Thiel, C. (2008) Classification on Soft Labels Is Robust Against Label Noise. Proceeding of the 12th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, Zagreb, 3-5 September 2008, 65-73. http://dx.doi.org/10.1007/978-3-540-85563-7_14
|
[4]
|
Tygar, J.D. (2011) Adversarial Machine Learning. IEEE Internet Computing, 15, 4-6. http://dx.doi.org/10.1109/MIC.2011.112
|
[5]
|
Nelson, B., Barreno, M., Chi, F.J., Joseph, A.D., Rubinstein, B.I.P., Saini, U., Sutton, C., Tygar, J.D. and Xia, K. (2008) Exploiting Machine Learning to Subvert Your Spam Filter. Proceeding of 1st Usenix Workshop on Large Scale Exploits and Emergent Threats, San Francisco, 15 April 2008, 1-9.
|
[6]
|
Bootkrajang, J. and Kaban, A. (2012) Label-Noise Robust Logistic Regression and Its Applications. Proceedings of the 2012 European Conference on Machine Learning and Knowledge Discovery in Database, Bristol, 24-28 September 2012, 143-158. http://dx.doi.org/10.1007/978-3-642-33460-3_15
|
[7]
|
DeBarr, D., Sun, H. and Wechsler, H. (2013) Adversarial Spam Detection Using the Randomized Hough Transform-Support Vector Machine. Proceedings of the IEEE International Conference on Machine Learning and Applications (ICMLA), Miami, 4-7 December 2013, 299-304. http://dx.doi.org/10.1109/icmla.2013.61
|
[8]
|
Basit, N. and Wechsler, H. (2011) Function Prediction for in Silico Protein Mutagenesis Using Transduction and Active Learning, Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, Atlanta, 12-15 November 2011, 939-940. http://dx.doi.org/10.1109/bibmw.2011.6112511
|
[9]
|
Sculley, D., Otey, M.E., Pohl, M., Spitznagel, B., Hainsworth, J. and Zhou, Y. (2011) Detecting Adversarial Advertisements in the Wild. Proceeding of the 17th ACM SKIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, 21-24 August 2011, 274-282.
|
[10]
|
Biggio, B., Fumera, G. and Roli, F. (2014) Security Evaluation of Pattern Classifiers under Attack. IEEE Transaction on Knowledge and Data Engineering, 26, 984-996. http://dx.doi.org/10.1109/TKDE.2013.57
|
[11]
|
Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B. and Tygar, J.D. (2011) Adversarial Machine Learning. Proceedings of the 4th Workshop on Artificial Intelligence and Security and Artificial Intelligence, Chicago, 17-21 October 2011, 43-57. http://dx.doi.org/10.1145/2046684.2046692
|
[12]
|
Vorobeychik, Y. and Li, B. (2014) Optimal Randomized Classification in Adversarial Settings. International Conference on Autonomous Agents and Multi-Agents Systems (AAMAS), Paris, 5-9 May 2014, 485-492.
|
[13]
|
DeBarr, D. and Wechsler, H. (2012) Spam Detection using Random Boost. Pattern Recognition Letters, 33, 1237- 1244. http://dx.doi.org/10.1016/j.patrec.2012.03.012
|
[14]
|
DeBarr, D. and Wechsler, H. (2009) Spam Detection Using Clustering, Random Forests, and Active Learning. Proceedings of the 6th Conference on E-Mail and Anti-Spam (CEAS), Mountain View, 16-17 July 2009, 16-17.
|
[15]
|
DeBarr, D. and Wechsler, H. (2010) Using Social Network Analysis for Spam Detection. Proceedings of the 3rd Conference on Social Computing, Behavioral Modeling and Prediction (SBP), Bethesda, 30-31 March 2010, 62-69. http://dx.doi.org/10.1007/978-3-642-12079-4_10
|
[16]
|
DeBarr, D., Ramanathan, V. and Wechsler, H. (2013) Phishing Detection Using Traffic Behavior, Spectral Clustering, and Random Forests. Proceedings of the IEEE International Conference on Intelligence and Security Informatics (ISI), Seattle, 4-7 June 2013, 67-72. http://dx.doi.org/10.1109/isi.2013.6578788
|
[17]
|
DeBarr, D. and Wechsler, H. (2013) Fraud Detection Using Reputation Features, SVMs, and Random Forests. Proceedings of the 9th International Conference on Data Mining, Las Vegas, 22-25 July 2013, 238-244.
|
[18]
|
Cherkassky, V. and Mulier, F. (2007) Learning from Data. 2nd Edition, Wiley, Hoboken. http://dx.doi.org/10.1002/9780470140529
|
[19]
|
Vapnik, V. (1998) Statistical Learning Theory. Springer, Berlin.
|
[20]
|
Chapelle, O., Scholkopf, B. and Zien, A. (Eds.) (2006) Semi-Supervised Learning. MIT Press, Cambridge. http://dx.doi.org/10.7551/mitpress/9780262033589.001.0001
|
[21]
|
Wechsler, H. and Li, F. (2014) Biometrics and Face Recognition. In: Balasubramanian, V., Ho, S.S. and Vovk, V., Eds., Conformal Predictions for Reliable Machine Learning: Theory, Adaptations, and Applications, Elsevier, Amsterdam, 189-215. http://dx.doi.org/10.1016/B978-0-12-398537-8.00010-9
|
[22]
|
Ho, S.S., and Wechsler, H. (2010) A Martingale Framework for Detecting Changes in The Data Generating Model in Data Streams. IEEE Transaction on Pattern Analysis and Machine Intelligence, 32, 2113-2127. http://dx.doi.org/10.1109/TPAMI.2010.48
|
[23]
|
Ho, S.S., and Wechsler, H. (2014) On Line Change Detection Using Exchangeability. In: Balasubramanian, V., Ho, S.S. and Vovk, V., Eds., Conformal Predictions for Reliable Machine Learning: Theory, Adaptations, and Applications, Elsevier, Amsterdam, 99-114. http://dx.doi.org/10.1016/B978-0-12-398537-8.00005-5
|
[24]
|
Proedrou, K., Nouretdinov, I., Vovk, V. and Gammerman, A. (2002) Transductive Confidence Machine for Pattern Recognition. Proceeding of the 13th European Conference on Machine Learning, Royal Holloway, 19-23 August 2002, 81-390. http://dx.doi.org/10.1007/3-540-36755-1_32
|
[25]
|
Vapnik,V. (2000) The Nature of Statistical Learning Theory. 2nd Edition, Springer, New York. http://dx.doi.org/10.1007/978-1-4757-3264-1
|
[26]
|
Li, F. and Wechsler, H. (2005) Open Set Face Recognition Using Transduction. IEEE Transaction on Pattern Analysis and Machine Intelligence, 27, 1686-1698. http://dx.doi.org/10.1109/TPAMI.2005.224
|
[27]
|
Vovk, V., Gammerman, A. and Shafer, G. (2005) Algorithmic Learning in a Random World. Springer, Berlin.
|
[28]
|
Wechsler, H. and Ho, S.S. (2011) Evidence-Based Management of Data Collection and Decision-Making Using Algorithmic Randomness and Active Learning. Journal of Intelligent Information Management, 3, 142-159. http://dx.doi.org/10.4236/iim.2011.34018
|
[29]
|
Li, Y., Fang, B., Guo, L. and Chen, Y. (2007) Network Anomaly Detection based on TCM-KNN Algorithm. Proceeding of the 2nd ACM Symposium on Information, Computer and Communications Security, Singapore, 20-22 March 2007, 13-19. http://dx.doi.org/10.1145/1229285.1229292
|
[30]
|
Li, Y. and Guo, L. (2007) An Efficient Network Anomaly Detection Scheme Based on TCM-KNN Algorithm and Data Reduction Mechanism. Proceeding of the IEEE Workshop on Information Assurance, West Point, 20-22 June 2007, 221-227. http://dx.doi.org/10.1109/iaw.2007.381936
|
[31]
|
Ho, S.S. and Wechsler, H. (2008) Query by Transduction. IEEE Transaction on Pattern Analysis and Machine Intelligence, 30, 1557-1571. http://dx.doi.org/10.1109/TPAMI.2007.70811
|
[32]
|
Balasubramanian, V., Chakraborty, S., Ho, S.S., Wechsler, H. and Panchanathan, S. (2014) Active Learning. In: Balasubramanian, V., Ho, S.S. and Vovk, V., Eds., Conformal Predictions for Reliable Machine Learning: Theory, Adaptations, and Applications, Elsevier, Amsterdam, 49-70. http://dx.doi.org/10.1016/B978-0-12-398537-8.00003-1
|
[33]
|
Li, Y., Guo, L., Fang, B.X., Tian, Z.H. and Zhang, Y.Z. (2008) Detecting DoS Attacks Against Web Server via Lightweight TCM-KNN Algorithm. Proceeding of the ACM SIGCOMM 2008 Conference on Data Communication, Seattle, 17-22 August 2008, 497-498.
|
[34]
|
Liu, A., Chen, j.X. and Wechsler, H. (2013) Real-Time Covert Timing Channels Detection in a Networked Virtual Environment. Proceeding of the 9th Annual International Federation for Information Processing, Orlando, 28-30 January 2013, 273-288. http://dx.doi.org/10.1007/978-3-642-41148-9_19
|
[35]
|
Li, Y. and Guo, L. (2007) An Active Learning based TCM-KNN Algorithm for Supervised Network Intrusion Detection. Computers and Security, 26, 459-467. http://dx.doi.org/10.1016/j.cose.2007.10.002
|
[36]
|
Basseville, M. and Nikiforov, I.V. (1993) Detection of Abrupt Changes: Theory and Application, 104. Prentice Hall, Englewood Cliffs.
|
[37]
|
Ramanathan, V. and Wechsler, H. (2013) Phishing Detection and Impersonated Entity Discovery Using Conditional Random Field and Latent Dirichlet Allocation. Computer and Security, 34, 123-139. http://dx.doi.org/10.1016/j.cose.2012.12.002
|
[38]
|
Ramanathan, V. and Wechsler, H. (2012) PhishGILLNET—Phishing Detection Methodology Using Probabilistic Latent Semantic Analysis, AdaBoost, and Co-Training. EURASIP Journal of Information Security, 2012, 1. http://dx.doi.org/10.1186/1687-417X-2012-1
|
[39]
|
Freund, Y. and Shapire, R.E. (1996) Experiments with a New Boosting Algorithm. Proceeding of 13th International Conference on Machine Learning (ICML), Bari, 3-6 July 1996, 148-156.
|
[40]
|
Blum, A. and Mitchell, T. (1998) Combining Labeled and Unlabeled Data with Co-Training. Proceedings of the Workshop on Computational Learning Theory, Morgan Kaufmann, 24-26 July 1998, 92-100. http://dx.doi.org/10.1145/279943.279962
|
[41]
|
Ramanathan, V. and Wechsler, H. (2012) Phishing Website Detection using Latent Dirichlet Allocation and AdaBoost. Proceedings of the IEEE International Conference on Intelligence and Security Informatics, Washington, 11-14 June 2012, 102-107. http://dx.doi.org/10.1109/isi.2012.6284100
|
[42]
|
Blei, D.M. and Frazier, P. (2010) Distance Dependent Chinese Restaurant Process. Proceedings of the 27th International Conference on Machine Learning (ICML), Haifa, 21-24 June 2010, 87-94.
|
[43]
|
Sun, H., Chen, J.X. and Wechsler, H. (2014) A New Segmentation Method for Broadcast Sports Video. Proceedings of the 8th International Conference on Frontier of Computer Science and Technology (FCST), Chengdu, 19-21 December 2014, 1789-1793. http://dx.doi.org/10.1109/cse.2014.328
|
[44]
|
Balcan, M.F., Beygelzimer, A. and Langford, J. (2009) Agnostic Active Learning. Journal of Computer and System Sciences, 75, 78-89. http://dx.doi.org/10.1016/j.jcss.2008.07.003
|
[45]
|
Balcan, M.F., Beygelzimer, A. and Langford, J. (2006) Agnostic Active Learning. Proceedings of the International Conference on Machine Learning (ICML), Pittsburgh, 25-29 June 2006, 65-72. http://dx.doi.org/10.1145/1143844.1143853
|
[46]
|
Kim, J., Bentley, P., Aiklelin, U., Greesmith, J., Tedesco, G. and Twycross, J. (2007) Immune System Approaches to Intrusion Detection—A Review. Natural Computing, 6, 413-466. http://dx.doi.org/10.1007/s11047-006-9026-4
|
[47]
|
Boudec, J.Y. and Sarafijanovic, S. (2004) An Artificial Immune System Approach to Misbehavior Detection on Mobile Ad-Hoc Networks, Proceeding of Biologically Inspired Approaches to Advanced Information Technology, Lausanne, 29-30 January 2004, 96-111. http://dx.doi.org/10.1007/978-3-540-27835-1_29
|
[48]
|
Tang, W., Yang, X.M., Xie, X., Peng, L.M., Youn, C.H. and Cao, Y. (2010) Avidity-Model based Clonal Selection Algorithm for Network Intrusion Detection. Proceedings of the 18th International Workshop on Quality of Service (IWQoS), Beijing, 16-18 June 2010, 1-5. http://dx.doi.org/10.1109/iwqos.2010.5542731
|
[49]
|
Doddington, G.R., Liggett, W., Martin, A., Przybocki, M. and Reynolds, D. (1998) Sheep, Goats, Lambs and Wolves: A Statistical Analysis of Speaker Performance. Proceedings of 5th International Conference Spoken Language Pro- cessing, Sydney, 30 November-4 December 1998, 1351-1354.
|
[50]
|
Yager, N. and Dunstone, T. (2010) The Biometric Menagerie. IEEE Transaction on Pattern Analysis and Machine Intelligence, 32, 220-230. http://dx.doi.org/10.1109/TPAMI.2008.291
|
[51]
|
Song, Y., Locasto, M.E., Stavrou, A., Keromytis, A.D. and Stolfo, S.J. (2010) On the Infeasibility of Modeling Polymorphic Shell Code. Machine Learning Journal, 81, 179-205. http://dx.doi.org/10.1007/s10994-009-5143-5
|
[52]
|
Laskov, P. and Lippmann, R. (2010) Machine Learning in Adversarial Environments. Machine Learning Journal, 81, 115-119. http://dx.doi.org/10.1007/s10994-010-5207-6
|
[53]
|
Stein, T., Chen, E. and Mangla, K. (2011) Facebook Immune System. Proceeding of the 4th Workshop on Social Network Systems (SNS), Salzburg, 10-13 April 2011, 1-8. http://dx.doi.org/10.1145/1989656.1989664
|
[54]
|
Lippmann, R. et al. (2000) Evaluating Intrusion Detection Systems: The 1998 DARPA Off-Line Intrusion Detection Evaluation. Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX), Los Alamitos, 25-27 January 2000, 12-26.
|
[55]
|
Barbara, D., Couto, J., Jajodia, S., Poypack, L. and Wu, N. (2001) ADAM: Detection Intrusions by Data Mining. Proceedings of the IEEE Workshop on Information Assurance and Security, West Point, 5-6 June 2001, 11-16. http://dx.doi.org/10.1145/604264.604268
|
[56]
|
Nappi, M. and Wechsler, H. (2012) Robust Re-Identification Using Randomness and Statistical Learning: Quo Vadis. Pattern Recognition Letters, 33, 1820-1827. http://dx.doi.org/10.1016/j.patrec.2012.02.005
|
[57]
|
Berlin, I. (1953) The Hedgehog and the Fox. Weidenfeld & Nicolson, London.
|
[58]
|
Ganek, A. and Corbi, T. (2003) The Dawning of The Autonomic Computing Era. IBM Systems Journal, 42, 5-18. http://dx.doi.org/10.1147/sj.421.0005
|
[59]
|
Fonash, P. and Schneck, P. (2015) Cybersecurity: From Months to Milliseconds. Computer, 48, 42-49. http://dx.doi.org/10.1109/MC.2015.11
|
[60]
|
Scheirer, W.J., Rocha, A., Parris, J. and Boult, T.E. (2012) Learning for Meta-Recognition. IEEE Transactions on Information Forensics and Security, 7, 1214-1224. http://dx.doi.org/10.1109/TIFS.2012.2192430
|
[61]
|
Wechsler, H. (2007) Reliable Face Recognition Methods. Springer, New York. http://dx.doi.org/10.1007/978-0-387-38464-1
|
[62]
|
Laxhammar, R. and Falkman, G. (2014) On-Line Learning and Sequential Anomaly Detection in Trajectories. IEEE Transaction on Pattern Analysis and Machine Intelligence, 36, 1158-1173. http://dx.doi.org/10.1109/TPAMI.2013.172
|
[63]
|
Keogh, E., Lin, J. and Fu, A. (2005) HOT SAX: Efficiently Finding the Most Unusual Time Series Subsequence. Proceeding of the 5th IEEE International Conference on Data Mining (ICDM), Houston, 27-30 November 2005, 226-233. http://dx.doi.org/10.1109/ICDM.2005.79
|
[64]
|
Nischenko, I. and Jordaan, E.M. (2006) Confidence of SVM Predictions Using a Strangeness Measure. Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vancouver, 16-21 July 2006, 1239-1246.
|
[65]
|
Camerra, A., Palpanas, T., Shieh, J., and Keogh, E. (2010) iSAX 2.0: Indexing and Mining One Billion Time Series, Proceeding of the 10th IEEE International Conference on Data Mining (ICDM), Sydney, 13-17 December 2010, 58-67. http://dx.doi.org/10.1109/icdm.2010.124
|
[66]
|
Leskovec, J., Rajaraman, A. and Ullman, J.D. (2015) Mining of Massive Data Sets. 2nd Edition, Cambridge University Press, Cambridge.
|
[67]
|
Rockwell, M. (2015) IARPA Eyes Insider-Threat Tech. http://fcw.com/articles/2015/03/30/iarpa-insider-tech.aspx
|
[68]
|
El Masri, A., Likarish, P., Wechsler, H. and Kang, B.B. (2014) Identifying Users with Application-Specific Command Streams. Proceedings of the 12th International Conference on Privacy, Security and Trust (PST 2014), Toronto, 23-24 July 2014, 232-238. http://dx.doi.org/10.1109/pst.2014.6890944
|
[69]
|
El Masri, A., Likarish, P., Wechsler, H. and Kang, B.B. (2015) Active Authentication Using Scrolling Behaviors. Proceedings of the 6th IEEE International Conference on Information and Communication Systems (ICICS 2015), Amman, 7-9 April 2015, 257-262. http://dx.doi.org/10.1109/IACS.2015.7103185
|
[70]
|
Socher, R., Ganjoo, M., Sridhar, H., Bastani, O., Manning, C.D. and Ng, A.Y. (2013) Zero-Shot Learning through Cross-Modal Transfer. Proceedings of the Advances in Neural Information Processing Systems (NIPS), 26, Lake Tahoe, 5-10 December 2013, 935-943.
|
[71]
|
SchÖlkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J. and Platt, J.C. (2000) Support Vector Machine for Novelty Detection. MIT Press, Cambridge, 582-588.
|
[72]
|
Tax, D.M.J. and W Duin, R.P. (2004) Support Vector Data Description. Machine Learning, 54, 45-66. http://dx.doi.org/10.1023/B:MACH.0000008084.60811.49
|
[73]
|
McDaniel, P., Jaeger, T., La Porta, T.F., et al. (2014) Security and Science of Agility. Proceedings of the 1st ACM Workshop on Moving Target Defense, Scottsdale, 3-7 November 2014, 13-19. http://dx.doi.org/10.1145/2663474.2663476
|
[74]
|
Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L., Guhr, T. and Stanley, H.E. (2002) A Random Matrix Theory Approach to Quantifying Collective Behavior of Stock Price Fluctuations. Empirical Science of Financial Fluctuations, 88, 35-40. http://dx.doi.org/10.1007/978-4-431-66993-7_5
|
[75]
|
Rosenow, B. (2005) DPG-School on Dynamics of Socio-Economic Systems. Bad Honnef, Germany.
|
[76]
|
Kritchman, S. and Nadler, B. (2009) Non-Parametric Detection of the Number of Signal: Hypothesis Testing and Random Matrix Theory. IEEE Transactions on Signal Processing, 57, 3930-3941. http://dx.doi.org/10.1109/TSP.2009.2022897
|
[77]
|
Baroni, M., Dinu, G. and Kruszewski, G. (2014) Don’t Count, Predict! A Systematic Comparison of Context-Counting vs. Context-Predicting Semantic Vectors. Proceeding of the 25nd Annual Meeting of the Association for Computational Linguistics, Baltimore, 23-25 June 2014, 238-247. http://dx.doi.org/10.3115/v1/p14-1023
|
[78]
|
Mikolov, T., Chen, K., Conrado, G. and Dean, J. (2013) Efficient Estimation of Word Representations in Vector Space. Proceedings of the Workshop at ICLR, Scottsdale, 2-4 May 2013, 1-12.
|
[79]
|
Pennington, J., Socher, R. and Manning, C.D. (2014) GloVe: Global Vectors for Word Representation. Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), Doha, 26-28 October 2014, 1532-1543. http://dx.doi.org/10.3115/v1/d14-1162
|
[80]
|
Kraemer, H.C. (1992) Evaluating Medical Tests: Objectives and Quantitative Guidelines. Sage Public-ation, Thousand Oaks.
|
[81]
|
Axelsson, S. (1999) The Base-Rate Fallacy and Its Implications for The Difficulty of Intrusion Detection. Proceedings of the 6th ACM Conference on Computer and Communications Security, Sing-apore, 1-4 November 1999, 1-7. http://dx.doi.org/10.1145/319709.319710
|
[82]
|
Carr, N. (2014) http://online.wsj.com/articles/automation-makes-us-dumb-1416589342
|
[83]
|
Cranor, L.F. and Buchler, N. (2015) Better Together: Usability and Security Go Hand in Hand. IEEE Security and Privacy, 12, 89-93. http://dx.doi.org/10.1109/MSP.2014.109
|
[84]
|
Yadron, D. and Beck, M. (2015) Investigators Eye China in Anthem Hack. http://www.wsj.com/articles/investigators-eye-china-in-anthem-hack-1423167560?mod=WSJ_hp_LEFTWhatsNewsCollection
|
[85]
|
Stahl, A.E. and Feigenson, L. (2015) Observing the Unexpected Enhances Infants’ Learning and Exploration. Science, 348, 91-94. http://dx.doi.org/10.1126/science.aaa3799
|
[86]
|
Sun, T. (1988) The Art of War. Thomas, C. (Translator), Shambhala Publications, Boston & London.
|
[87]
|
Rohrbach, M., Stark, M. and Schiele, B. (2011) Evaluating Knowledge Transfer and Zero-Shot Learning in A Large Scale Setting. Proceedings of the Computer Vision and Pattern Recognition (CVPR), Colorado Springs, 20-25 June 2011, 1641-1648. http://dx.doi.org/10.1109/cvpr.2011.5995627
|
[88]
|
Raina, R., Battle, A., Lee, H., Packer, B. and Ng, A.Y. (2007) Self-Taught Learning: Transfer Learning from Unlabeled Data. Proceedings of the 24th International Conference on Machine Learning, Corvalis, 20-24 June 2007, 759-766. http://dx.doi.org/10.1145/1273496.1273592
|
[89]
|
Dwork, C. (2009) The Differential Privacy Frontier. Proceedings of the 6th Theory of Cryptography Conference (TCC), San Francisco, 15-17 March 2009, 496-502.
|
[90]
|
McGinty, J.C. (2015) How Anti-vaccine Views Hurt Herd Immunity. Wall Street Journal. http://en.wikipedia.org/wiki/Self-information
|
[91]
|
Eubanks, S. (2003) Social Networks and Epidemics. http://silver.ima.umn.edu/talks/workshops/11-3-6.2003/eubank/eubank.html
|
[92]
|
Eubank, S., Kumar, V.S., Marathe, M., Srinivasan, A. and Wang, N. (2006) Structure of Social Contact Networks and Their Impact on Epidemics. AMS-DIMACS Special Volume on Epidemiology, 70, 181-213.
|
[93]
|
Volz, E. and Meyers, L.A. (2009) Epidemic Thresholds in Dynamic Contact Networks. Journal of The Royal Society Interface, 6, 233-241. http://dx.doi.org/10.1098/rsif.2008.0218
|
[94]
|
Lewontin, R. (2000) The Triple Helix. Harvard University Press, Cambridge.
|
[95]
|
Rothman, S. (2002) Lessons from the Living Cell: The Limits of Reductionism. McGraw-Hill, New York.
|
[96]
|
Heckman, K.E., Stech, F.J., Schmocker, B.S. and Thomas, R.K. (2015) Denial and Deception in Cyber Defense. Computer, 48, 36-44. http://dx.doi.org/10.1109/mc.2015.104
|
[97]
|
Wechsler, H. (2012) Biometrics, Forensics, Security, and Privacy using Smart Identity Management and Interoperability: Validation and Vulnerabilities of Various Techniques. Review of Policy Research, 29, 63-89. http://dx.doi.org/10.1111/j.1541-1338.2011.00538.x
|
[98]
|
Kott, A., Swami, A. and McDaniel, P. (2014) Security Outlook: Six Cyber Game Changers for the Next 15 Years. Computer, 47, 104-106. http://dx.doi.org/10.1109/MC.2014.366
|
[99]
|
Yoran, A. (2015) Computer-Security Industry Critiques Itself Following High-Profile Breaches. http://www.wsj.com/articles/computer-security-industry-critiques-itself-following-high-profilebreach-es-1429573277
|
[100]
|
Lee, R.B. (2015) Rethinking Computers for Cyber Security. Computer, 48, 16-25. http://dx.doi.org/10.1109/MC.2015.118
|