Extracellular Enzymatic Activity of Tuber maculatum and Tuber aestivum Mycelia


Truffle mycelia exhibit a complex interaction pattern with host plants and have been extensively studied over the last years as a source of new bioactive compounds. Fungal enzymes possess a wide use in food industry, confectionaries, textiles and leather industries in order to simplify the processing of raw materials. They are often more stable than enzymes derived from other sources. Tuber maculatum and Tuber aestivum mycelia were tested for enzymes production in Petri dishes solid medium conditions. The results showed that Tuber maculatum produced seven extracellular enzymes (amylase, xylanase, laccase, lipase, peroxidase, cellulase and catalase) while Tuber aestivum produced only three enzymes (amylase, peroxidase and catalase).

Share and Cite:

Nadim, M. , Deshaware, S. , Saidi, N. , Abd-Elhakeem, M. , Ojamo, H. and Shamekh, S. (2015) Extracellular Enzymatic Activity of Tuber maculatum and Tuber aestivum Mycelia. Advances in Microbiology, 5, 523-530. doi: 10.4236/aim.2015.57054.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Shamekh, S., Grebenc, T., Leisola, M. and Turunen, O. (2014) The Cultivation of Oak Seedlings Inoculated with Tuber aestivum Vittad. in the Boreal Region of Finland. Mycol Progress, 13, 373-380. http://dx.doi.org/10.1007/s11557-013-0923-5
[2] Streiblová, E., Gryndlerová, H., Valda, S. and Gryndler, M. (2010) Tuber aestivum—Hypogeous Fungus Neglected in the Czech Republic. Czech Mycology, 61, 163-173.
[3] Kosonen, L. (2002) Mita kasvaako Suomessakin tryffeleita. Sienilehti, 54, 105-110.
[4] Shamekh, S., Donnini, D., Zambonelli, A. and Leisola, M. (2009) Wild Finnish Truffles. Acta Botanica Yunnanica, 31, 69-71.
[5] Culleré, L., Ferreira, V., Chevret, B., Venturini, M.E. and Sánchez-Gimeno, A.C. (2010) Characterization of Aroma Active Compounds in Black Truffle (Tuber melanosporum) and Summer Truffle (Tuber aestivum) by Gas Chromatographyolfatometry. Food Chemistry, 122, 300-306. http://dx.doi.org/10.1016/j.foodchem.2010.02.024
[6] Frank, B. (2005) On the Nutritional Dependence of Certain Trees on Root Symbiosis with Belowground Fungi. Mycorrhiza, 15, 267-275. http://dx.doi.org/10.1007/s00572-004-0329-y
[7] Rejón-Palomares, A., García-Garrido, J.M., Ocampo, J.A. and García-Romera, I. (1996) Presence of Xyloglucan-Hydrolyzing Glucanases (Xyloglucanases) in Arbuscular Mycorrhizal Symbiosis. Symbiosis, 21, 249-261.
[8] Karigar, C.S. and Rao, S.S. (2011) Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review. Enzyme Research, 2011, Article ID: 805187. http://dx.doi.org/10.4061/2011/805187
[9] Neelam, G., Sumanta, R., Sutapa, B. and Vivek, R. (2013) A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and beyond. BioMed Research International, 2013, Article ID: 329121.
[10] Swargiari, B.N. and Baruah, P.K. (2013) Isolation and Screening of Amylolytic Penicellium Species from Soil. International Journal of Pharma and Bio Sciences, 4, 575-581.
[11] Pandey, A., Soccol, C.R. and Mitchell, D. (2000) New Developments in Solid State Fermentation: I-Bioprocesses and Products. Process Biochemistry, 35, 1153-1169. http://dx.doi.org/10.1016/S0032-9592(00)00152-7
[12] Mckelvey, M.S. and Murphy, A.R. (2011) Biotechnological Use of Fungal Enzymes. In: Kavanagh, K., Ed., Fungi: Biology and Applications, John Wiley & Sons, Ltd., Chichester, 179-202.
[13] Hankin, L. and Anagnostakis, S.L. (1975) The Use of Solid Media for Detection of Enzyme Production by Fungi. Mycology, 67, 597-607. http://dx.doi.org/10.2307/3758395
[14] Sunitha, V.H., Nirmala Devi, D. and Srinivas, C. (2013) Extracellular Enzymatic Activity of Endophytic Fungal Strains Isolated from Medicinal Plants. World Journal of Agricultural Sciences, 9, 1-9.
[15] Ashutosh, R., Panda, A. and Gupta, N. (2014) Comparative Evaluation of Nutritional, Biochemical and Enzymatic Properties of the Mycelium of Two Pleurotus Species. Tropical Plant Research, 1, 22-26.
[16] Barrasa, J.M., , Blanco, M.N., Esteve-Raventós, F., Altés, A., Checa, J., Martínez, A.T. and Ruiz-Duenas, F.J. (2014) Wood and Humus Decay Strategies by White-Rot Basidiomycetes Correlate with Two Different Dye Decolorization and Enzyme Secretion Patterns on Agar Plates. Fungal Genetics and Biology, 72, 106-114. http://dx.doi.org/10.1016/j.fgb.2014.03.007
[17] Miranda, M., Bonfigli, A., Zarivi, O., Ragnelli, A.M., Pacioni, G. and Botti, D. (1992) Truffle Tyrosinase: Properties and Activity. Plant Science, 81, 175-182. http://dx.doi.org/10.1016/0168-9452(92)90040-S
[18] Pointing, S.B. (1999) Qualitative Methods for the Determination of Lignocellulolytic Enzyme Production by Tropical Fungi. Fungal Divers, 2, 17-33.
[19] Altaf, S.A., Umar, D.M. and Muhammad, M.S. (2010) Production of Xylanase Enzyme by Pleurotus eryngii and Flamulina velutipes Grown on Different Carbon Sources under Submerged Fermentation. World Applied Sciences Journal, 8, 47-49.
[20] Amicarelli, F., Bonfigli, S., Colafarina, A., Cimini, A.M., Pruiti, B., Cesare, P., et al. (1999) Glutathione Dependent Enzymes and Antioxidant Defenses in Truffles: Organisms Living in Microaerobic Environments. Mycological Research, 103, 1643-1648.
[21] Márquez, A.A.T., Mendoza, M.G.D., González, M.S.S., Buntins, D.S.E. and Loera, C.O. (2007) Actividad fibrolítica de enzimas producidas por Trametes sp. EUM1, Pleurotus ostreatus IE8 y Aspergillus niger AD96.4 en fermentación sólida. Interciencia, 32, 780-785.
[22] Okamoto, K., Yanagi, S.O. and Sakai, T. (2000) Purification and Characterization of Extracellular Laccase from Pleurotus ostreatus. Mycoscience, 41, 7-13. http://dx.doi.org/10.1007/BF02464380
[23] Shah, V. and Nerud, F. (2002) Lignin Degrading System of White-Rot Fungi and Its Exploitation for Dye Decolorization. Canadian Journal of Microbiology, 48, 857-870. http://dx.doi.org/10.1139/w02-090

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.