[1]
|
Zhang, J., et al. (2005) Temperature Sensitive Poly[N-isopropylacrylamide-co-(acryloylβ-cyclodextrin)] for Improved Drug Release. Macromolecular Bioscience, 5, 192-196. http://dx.doi.org/10.1002/mabi.200400167
|
[2]
|
Thorsteinn, L. and Dominique, D. (2007) Cyclodextrin and Their Pharmaceutical Applications. International Journal of Pharmaceutics, 329, 1-11. http://dx.doi.org/10.1016/j.ijpharm.2006.10.044
|
[3]
|
He, H., Chen, S., Zhou, J., Dou, Y., Song, L., Che, L., Zhou, X., Chen, X., Jia, Y., Zhang, J., Li, S. and Li, X. (2013) Cyclodextrin-Derived pH-Responsive Nanoparticles for Delivery of Paclitaxel. Biomaterials, 34, 5344-5358. http://dx.doi.org/10.1016/j.biomaterials.2013.03.068
|
[4]
|
Yuan, Z., Ye, Y., Gao, F., Yuan, H., Lan, M., Lou, K. and Wang, W. (2013) Chitosan-Graft-β-Cyclodextrin Nanoparticles as a Carrier for Controlled Drug Release. International Journal of Pharmaceutics, 446, 191-198. http://dx.doi.org/10.1016/j.ijpharm.2013.02.024
|
[5]
|
Zhang, J. and Ma, P. (2013) Cyclodextrin-Based Supramolecular Systems for Drug Delivery: Recent Progress and Future Perspective. Advanced Drug Delivery Reviews, 65, 1215-1233. http://dx.doi.org/10.1016/j.addr.2013.05.001
|
[6]
|
Wang, J. and Jiang, M. (2006) Polymeric Self-Assembly into Micelles and Hollow Spheres with Multiscale Cavities Driven by Inclusion Complexation. Journal of American Chemical Society, 128, 3703-3708. http://dx.doi.org/10.1021/ja056775v
|
[7]
|
Zheng, H., Rao, Y., Yin, Y., Xiong, X., Xu, P. and Lu, B. (2011) Preparation, Characterization, and in Vitro Drug Release Behavior of 6-Mercaptopurine-carboxymethyl Chitosan. Carbohydrate Polymer, 83, 1952-1958. http://dx.doi.org/10.1016/j.carbpol.2010.10.069
|
[8]
|
Gong, X., Yin, Y., Huang, Z., Lu, B., Xu, P., Zheng, H., Xiong, F., Xu, H., Xiong, X. and Gu, X. (2012) Preparation, Characterization and in Vitro Release Study of a Glutathione-Dependent Polymeric Prodrug Cis-3-(9H-purin-6-ylthio)- acrylic acid-graft-carboxymethyl chitosan. International Journal of Pharmaceutics, 436, 240-247. http://dx.doi.org/10.1016/j.ijpharm.2012.06.043
|
[9]
|
Chang, D., Lei, J., Cui, H., Lu, N., Sun, Y., Zhang, X., Gao, C., Zheng, H. and Yin, Y. (2012) Disulfide Cross-Linked Nanospheres from Sodium Alginate Derivative for Inflammatory Bowel Disease: Preparation, Characterization, and in Vitro Drug Release Behavior. Carbohydrate Polymer, 88, 663-669. http://dx.doi.org/10.1016/j.carbpol.2012.01.020
|
[10]
|
Gao, C., Liu, T., Dang, Y., Yu, Z., Wang, W., Guo, J., Zhang, X., He, G., Zheng, H., Yin, Y. and Kong, X. (2014) pH/Redox Responsive Core Cross-Linked Nanoparticles from Thiolated Carboxymethyl Chitosan for in Vitro Release Study of Methotrexate. Carbohydrate Polymer, 111, 964-970. http://dx.doi.org/10.1016/j.carbpol.2014.05.012
|
[11]
|
Wang, W., Yang, H., Kong, X., Ye, Z., Yin, Y., Zhang, X., He, G., Xu, P. and Zheng, H. (2014) Hydrogen-Bonding Strategy for Constructing pH-Sensitive Core-Shell Micelles with Hydrophilic Polymer as the Shell and Hydrophobic Drug as the Core. RSC Advances, 4, 28499-28503. http://dx.doi.org/10.1039/c4ra03716b
|
[12]
|
Schafer, F.Q. and Buettner, G.R. (2001) Redox Environment of the Cell as Viewed through the Redox State of the Glutathione Disulfide/Glutathione Couple. Free Radical Biology Medicine, 30, 1191-1212. http://dx.doi.org/10.1039/c4ra03716b
|
[13]
|
Zacchigna, M., Cateni, F., Di-Luca, G. and Drioli, S. (2007) A Simple Method for the Preparation of PEG-6-mercap- topurine for Oral Administration. Bioorganic & Medicinal Chemistry, 17, 6607-6609. http://dx.doi.org/10.1016/j.bmcl.2007.09.064
|
[14]
|
Chen, Y., Peng, C. and Lu, Y. (2015) Responsiveness and Release Characteristic of Semi-IPN Hydrogels Consisting of Nano-Sized Clay Crosslinked Poly(Dimethylaminoethyl Methacrylate) and Linear Carboxymethyl Chitosan. Journal of Nanoscience and Nanotechnology, 15, 164-171. http://dx.doi.org/10.1166/jnn.2015.8768
|
[15]
|
Gerweck, L.E. and Seetharaman, K. (1996) Cellular pH Gradient in Tumor versus Normal Tissue: Potential Exploitation for Treatment of Cancer. Cancer Research, 56, 1194-1198.
|
[16]
|
Doerr, I.L., Wempen, I., Clarke, D.A. and Fox, J.J. (1961) Thiation of Nucleosides. III. Oxidation of 6-Mercaptopu- rines. Journal of Organic Chemistry, 26, 3401-3409. http://dx.doi.org/10.1021/jo01067a093
|
[17]
|
Rajendiran, N., Mohandoss, T. and Sankaranarayanan, R.K. (2014) Nanostructure Formed by Cyclodextrin Covered Procainamide through Supramolecular Self-Assembly—Spectral and Molecular Modeling Study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 875-883. http://dx.doi.org/10.1016/j.saa.2014.09.108
|
[18]
|
Arti, M., Manisha, S. and Deepak, S. (2011) Investigation of the Binding of Roxatidine Acetate Hydrochloride with Cyclomaltoheptaose (β-Cyclodextrin) Using IR and NMR Spectroscopy. Carbohydrate Research, 346, 1809-1813. http://dx.doi.org/10.1016/j.carres.2011.07.003
|
[19]
|
Warayuth, S., Onanong, N., Pattarapond, G., Somsak, S., Issara, S., Apinan, S., Satit, P. and Uracha, R. (2012) Water-Soluble β-Cyclodextrin Grafted with Chitosan and Its Inclusion Complex as a Mucoadhesive Eugenol Carrier. Carbohydrate Polymer, 89, 623-631. http://dx.doi.org/10.1016/j.carbpol.2012.03.060
|
[20]
|
Yuan, P., Chengde, L., Zhongxing, Z., Kerh, L., Jianhai, C. and Jun, L. (2011) Chitosan-Graft-(PEI-β-Cyclodextrin) Copolymers and Their Supramolecular PEGylation for DNA and siRNA Delivery. Biomaterials, 32, 8328-8341. http://dx.doi.org/10.1016/j.biomaterials.2011.07.038
|