[1]
|
Kumar, V. and Yadav, S.K. (2009) Plant-Mediated Synthesis of Silver and Gold Nanoparticles and Their Applications. Journal of Chemical Technology & Biotechnology, 84, 151-157. http://dx.doi.org/10.1002/jctb.2023
|
[2]
|
Biswas, A., Bayer, I.S., Biris, A.S., Wang, W., Dervishi, E. and Faupel, F. (2012) Advances in Top-Down and Bottom- Up Surface Nanofabrication: Techniques, Applications & Future Prospects. Advances in Colloid & Interface Science, 170, 2-27. http://dx.doi.org/10.1016/j.cis.2011.11.001
|
[3]
|
Kumar, V. and Yadav, S.K. (2012) Characterization of Gold Nanoparticles Synthesized by Leaf and Seed Extract of Syzygium cumini L. Journal of Experimental Nanoscience, 7, 440-451. http://dx.doi.org/10.1080/17458080.2010.543989
|
[4]
|
Daniel, M.C. and Astruc, D. (2004) Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews, 104, 293-346.
|
[5]
|
Nel, A., Xia, T., Madler, L. and Li, N. (2006) Toxic Potential of Materials at the Nanolevel. Science, 311, 622-627. http://dx.doi.org/10.1126/science.1114397
|
[6]
|
Mohanpuria, P., Rana, N.K. and Yadav, S.K. (2008) Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. Journal of Nanoparticle Research, 10, 507-517. http://dx.doi.org/10.1007/s11051-007-9275-x
|
[7]
|
Sozer, N. and Kokini, J.L. (2009) Nanotechnology and Its Applications in the Food Sector. Trends in Biotechnology, 27, 82-89. http://dx.doi.org/10.1016/j.tibtech.2008.10.010
|
[8]
|
Boczkowski, J. and Hoet, P. (2010) What’s New in Nanotoxicology? Implications for Public Health from a Brief Review of the 2008 Literature. Nanotoxicology, 4, 1-14. http://dx.doi.org/10.3109/17435390903428844
|
[9]
|
Nowack, B. and Bucheli, T.D. (2007) Occurrence, Behavior and Effects of Nanoparticles in the Environment. Environmental Pollution, 150, 5-22.
|
[10]
|
Unrine, J., Bertsch, P. and Hunyadi, S. (2008) Bioavailability, Trophic Transfer, and Toxicity of Manufactured Metal and Metal Oxide Nanoparticles in Terrestrial Environments. In: Grassian, V.H., Ed., Nanoscience and Nanotechnology: Environmental and Health Impacts, John Wiley & Sons, Inc., Hoboken, 345-366. http://dx.doi.org/10.1002/9780470396612.ch14
|
[11]
|
Han, O. (2011) Molecular Mechanism of Intestinal Iron Absorption. Metallomics, 3, 103-109. http://dx.doi.org/10.1039/c0mt00043d
|
[12]
|
Lin, D. and Xing, B. (2007) Phytotoxicity of Nanoparticles: Inhibition of Seed Germination and Root Growth. Environmental Pollution, 50, 243-250. http://dx.doi.org/10.1016/j.envpol.2007.01.016
|
[13]
|
Barrena, R., Casals, E., Colón, J., Font, X., Sánchez, A. and Puntes, V. (2009) Evaluation of the Ecotoxicity of Model Nanoparticles. Chemosphere, 75, 850-857. http://dx.doi.org/10.1016/j.chemosphere.2009.01.078
|
[14]
|
Seeger, E.M., Baun, A., Kstner, M. and Trapp, S. (2009) Insignificant Acute Toxicity of TiO2 Nanoparticles to Willow Trees. Journal of Soils & Sediments, 9, 46-53. http://dx.doi.org/10.1007/s11368-008-0034-0
|
[15]
|
Khodakovskaya, M.V., de Silva, K., Biris, A.S., Dervishi, E. and Villagarcia, H. (2012) Carbon Nanotubes Induce Growth Enhancement of Tobacco Cells. ACS Nano, 6, 2128-2135. http://dx.doi.org/10.1021/nn204643g
|
[16]
|
Lu, C.M., Zhang, C.Y., Wen, J.Q. and Wu, G.R. (2002) Effects of Nano Material on Germination and Growth of Soybean. Soybean Science, 21, 168-171.
|
[17]
|
Zheng, L., Su, M.Y., Wu, X., Liu, C., Qu, C.X., Chen, L., et al. (2008) Antioxidant Stress Is Promoted by Nano-Anatase in Spinach Chloroplasts under UV-B Radiation. Biological Trace Element Research, 121, 69-79. http://dx.doi.org/10.1007/s12011-007-8028-0
|
[18]
|
Feizi, H., Moghaddam, P.R., Shahtahmassebi, N. and Fotovat, A. (2012) Impact of Bulk and Nanosized Titanium Dioxide (TiO2) on Wheat Seed Germination and Seedling Growth. Biological Trace Element Research, 46, 101-106. http://dx.doi.org/10.1007/s12011-011-9222-7
|
[19]
|
Mukherjee, A., Peralta-Videa, J.R., Bandyopadhyay, S., Rico, C.M., Zhao, L.J. and Gardea-Torresdey, J.L. (2014) Physiological Effects of Nanoparticulate ZnO in Green Peas (Pisum sativum L.) Cultivated in Soil. Metallomics, 6, 132-138. http://dx.doi.org/10.1039/C3MT00064H
|
[20]
|
Ghafariyan, M.H., Malakouti, M.J., Dadpour, M.R., Stroeve, P. and Mahmoudi, M. (2013) Effects of Magnetite Nanoparticles on Soybean Chlorophyll. Environmental Science & Technology, 47, 10645-10652.
|
[21]
|
Ji, J., Long, Z.F. and Lin, D.H. (2011) Toxicity of Oxide Nanoparticles to the Green Algae Chlorella sp. Chemical Engineering Journal, 170, 525-530. http://dx.doi.org/10.1016/j.cej.2010.11.026
|
[22]
|
Linsebigler, A.L., Lu, G. and Yates, J.T. (1995) Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95, 735-758.
|
[23]
|
Chen, X.B. and Mao, S.S. (2007) Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 107, 2891-2959. http://dx.doi.org/10.1021/cr0500535
|
[24]
|
Warheit, D.B., Webb, T.R., Reed, K.L., Frerichs, S. and Sayes, C.M. (2007) Pulmonary Toxicity Study in Rats with Three Forms of Ultrafine-TiO2 Particles: Differential Responses Related to Surface Properties. Toxicology, 230, 90- 104. http://dx.doi.org/10.1016/j.tox.2006.11.002
|
[25]
|
Wang, Y.H., Ying, Y., Chen, J. and Wang, X.C. (2004) Transgenic Arabidopsis Overexpressing Mn-SOD Enhanced Salt-Tolerance. Plant Science, 167, 671-677. http://dx.doi.org/10.1016/j.plantsci.2004.03.032
|
[26]
|
Gallego, S.M., Benavídes, M.P. and Tomaro, M.L. (1996) Effect of Heavy Metal Ion Excess on Sunflower Leaves: Evidence for Involvement of Oxidative Stress. Plant Science, 121, 151-159. http://dx.doi.org/10.1016/S0168-9452(96)04528-1
|
[27]
|
Heath, R.L. and Packer, L. (1968) Photoperoxidation in Isolated Chloroplasts: I. Kinetics and Stoichiometry of Fatty Acid Peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198. http://dx.doi.org/10.1016/0003-9861(68)90654-1
|