[1]
|
Baby, R. and Balaji, C. (2013) Experimental Investigations on Thermal Performance Enhancement and Effect of Orientation on Porous Matrix Filled PCM Based Heat Sink. International Communications in Heat and Mass Transfer, 46, 27-30. http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.05.018
|
[2]
|
Sundarram, S.S. and Li, W. (2014) The Effect of Pore Size and Porosity on Thermal Management Performance of Phase Change Material Infiltrated Microcellular Metal Foams. Applied Thermal Engineering, 64, 147-154.
http://dx.doi.org/10.1016/j.applthermaleng.2013.11.072
|
[3]
|
Tyagi, V.V. and Buddhi, D. (2007) PCM Thermal Storage in Buildings: A State of Art. Renewable and Sustainable Energy Reviews, 11, 1146-1166. http://dx.doi.org/10.1016/j.rser.2005.10.002
|
[4]
|
Moeini Sedeh, M. and Khodadadi, J.M. (2013) Thermal Conductivity Improvement of Phase Change Materials/Graphite Foam Composites. Carbon, 60, 117-128. http://dx.doi.org/10.1016/j.carbon.2013.04.004
|
[5]
|
Song, J.Z. and He, S.Y. (2008) The Heat Transfer Performance of Porous Aluminum Foam. Jiangsu Metallurgy, 36, 28-30. http://www.cqvip.com/qk/95422x/200802/27218646.html
|
[6]
|
Zhang, J., Zhang, D.Q., Wu, P.W., Wang, G., Li, F. and Dai, P.L. (2014) Numerical Simulation Research of Investment Casting for TiB2/A356 Aluminum Base Composite. Rare Metal Materials and Engineering, 43, 47-51.
http://dx.doi.org/10.1016/S1875-5372(14)60050-3
|
[7]
|
Liu, Z., Yao, Y. and Wu, H. (2013) Numerical Modeling for Sol-id-Liquid Phase Change Phenomena in Porous Media: Shell-and-Tube Type Latent Heat Thermal Energy Storage. Applied Energy, 112, 1222-1232.
http://dx.doi.org/10.1016/j.apenergy.2013.02.022
|