[1]
|
Sakiadis, B.C. (1961) Boundary-Layer Behavior on Continuous Solid Surfaces: I. Boundary-Layer Equations for Two- Dimensional and Axisymmetric Flow. AIChE Journal, 7, 26-28. http://dx.doi.org/10.1002/aic.690070108
|
[2]
|
Sakiadis, B.C. (1961) Boundary-Layer Behavior on Continuous Solid Surfaces: II. Boundary-Layer Equations on a Continuous Flat Surface. AIChE Journal, 7, 221-225. http://dx.doi.org/10.1002/aic.690070211
|
[3]
|
Erickson. L.E., Fan. L.T. and Fox, V.G. (1966) Heat and Mass Transfer on Moving Continuous Flat Plate with Suction or Injection. Industrial Engineering Chemistry Fundamentals, 5, 19-25.
|
[4]
|
Gireesha, B.J., Roopa, G.S. and Bagewadi, C.S. (2011) Boundary Layer Flow of an Unsteady Dusty Fluid and Heat Transfer over a Stretching Sheet with Non-Uniform Heat Source/Sink. Scientific Research, 3, 726-735.
http://dx.doi.org/10.4236/eng.2011.37087
|
[5]
|
Chen, T.S. and Strobel, F.A. (1980) Buoyancy Effects in Boundary Layer Adjacent to a Continuous, Moving Horizontal Flat Plate. Journal of Heat Transfer, 102, 170-172. http://dx.doi.org/10.1115/1.3244232
|
[6]
|
Grubka, L.J. and Bobba, K.M. (1985) Heat Transfer Characteristics of a Continuous, Stretching Surface with Variable Temperature. ASME J. Heat Transfer, 107, 248-250. http://dx.doi.org/10.1115/1.3247387
|
[7]
|
Dutta, B.K., Roy, P. and Gupta, A.S. (1985) Temperature Field in Flow over a Stretching Surface with Uniform Heat Flux. International Communications in Heat and Mass Transfer, 12, 89-94.
http://dx.doi.org/10.1016/0735-1933(85)90010-7
|
[8]
|
Chen, C.K. and Char, M.I. (1988) Heat Transfer of a Continuous Stretching Surface with Suction or Blowing. Journal of Mathematical Analysis and Applications, 135, 568-580. http://dx.doi.org/10.1016/0022-247X(88)90172-2
|
[9]
|
Karwe, M.V. and Jaluria, Y. (1988) Fluid Flow and Mixed Convection Transport from a Moving Plate in Rolling and Extrusion Processes. ASME J. Heat Transfer, 110, 655-661. http://dx.doi.org/10.1115/1.3250542
|
[10]
|
Karwe, M.V. and Jaluria, Y. (1991) Numerical Simulation of Thermal Transport Associated With a Continuously Moving Flat Sheet in Materials Processing. ASME J. Heat Transfer, 113, 612-619. http://dx.doi.org/10.1115/1.2910609
|
[11]
|
Patil, P.M., Roy, S. and Pop, I. (2010) Unsteady Mixed Convection Flow over a Vertical Stretching Sheet in a Parallel Free Stream with Variable Wall Temperature. International Journal of Heat and Mass Transfer, 53, 4741-4748.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.06.018
|
[12]
|
Rajeswari, V., Kumari, M. and Nath, G. (1993) Unsteady Three-Dimensional Boundary Layer Flow Due to a Stretching Surface. Actamechanica, 98, 123-141.
|
[13]
|
Ali, M. and Al-Yousef, F. (2002) Laminar Mixed Convection Boundary Layers Induced by a Linearly Stretching Permeable Surface. International Journal of Heat and Mass Transfer, 45, 4241-4250.
http://dx.doi.org/10.1016/S0017-9310(02)00142-4
|
[14]
|
Partha, M.K., Murthy, P.V.S.N. and Rajasekhar, G.P. (2005) Effect of Viscous Dissipation on the Mixed Convection Heat Transfer from an Exponentially Stretching Surface. Heat and Mass Transfer, 41, 360-366.
http://dx.doi.org/10.1007/s00231-004-0552-2
|
[15]
|
Schowalter, W.R. (1978) Mechanics of Non-Newtonian Fluids. Pergamon Press, New York.
|
[16]
|
Rana, P. and Bhargava, R. (2012) Flow and Heat Transfer of a Nanofluid over a Nonlinearly Stretching Sheet: A Numerical Study. Communications in Nonlinear Science and Numerical Simulation, 17, 212-226.
http://dx.doi.org/10.1016/j.cnsns.2011.05.009
|
[17]
|
Nazar, M., Fetecau, C., Vieru, D. and Fetecau, C. (2010) New Exact Solutions Corresponding to the Second Problem of Stokes for Second Grade Fluids. Nonlinear Analysis: Real World Applications, 11, 584-591.
http://dx.doi.org/10.1016/j.nonrwa.2008.10.055
|
[18]
|
Fetecau, C., Hayat, T., Zierep, J. and Sajid, M. (2011) Energetic Balance for the Rayleigh—Stokes problem of an Oldroyd-B fluid. Nonlinear Analysis: Real World Applications, 12, 1-13.
http://dx.doi.org/10.1016/j.nonrwa.2009.12.009
|
[19]
|
Wang, S.W. and Tan, W.C. (2008) Stability Analysis of Double-Diffusive Convection of Maxwell Fluid in a Porous Medium Heated from Below. Physics Letters A, 372, 3046-3050. http://dx.doi.org/10.1016/j.physleta.2008.01.024
|
[20]
|
Tan, W.C. and Xu, M.Y. (2004) Unsteady Flows of a Generalized Second Grade Fluid with the Fractional Derivative Model between Two Parallel Plates. Acta Mechanica Sinica, 20, 471-476.
|
[21]
|
Zhang, Z.Y., Fu, C.J., Tan, W.C. and Wang, C.Y. (2007) On Set of Oscillatory Convection in a Porous Cylinder Saturated with a Viscoelastic Fluid. Physics of Fluids, 19, 98-104.
|
[22]
|
Rashidi, M.M., Chamkha, A.J. and Keimanesh, M. (2011) Application of Multi-Step Differential Transform Method on Flow of a Second Grade Fluid over a Stretching or Shrinking Sheet. American Journal of Computational Mathematics, 6, 119-128. http://dx.doi.org/10.4236/ajcm.2011.12012
|
[23]
|
Ali, N., Hayat, T. and Asghar, S. (2009) Peristaltic Flow of Maxwell Fluid in a Channel with Compliant Walls. Chaos, Solitons & Fractals, 39, 407-416. http://dx.doi.org/10.1016/j.chaos.2007.04.010
|
[24]
|
Attia, H.A. and Seddeek, M.A. (2007) On the Effectiveness of Uniform Suction or Injection on Two Dimensional Stagnation-Point Flow towards a Stretching Surface with Heat Generation. Chemical Engineering Communications, 194, 553-564. http://dx.doi.org/10.1080/00986440600992537
|
[25]
|
Hussain, M., Hayat, T., Asghar, S. and Fetecau, C. (2010) Oscillatory Flows of Second Grade Fluid in a Porous Space. Nonlinear Analysis: Real World Applications, 11, 2403-2414. http://dx.doi.org/10.1016/j.nonrwa.2009.07.016
|
[26]
|
Casson, N. (1959) In Reheology of Dipersed System. Peragamon Press, Oxford.
|
[27]
|
Nakamura, M. and Sawada, T. (1988) Numerical Study on the Flow of a Non-Newtonian Fluid through an Axisymmetric Stenosis. Journal of Biomechanical Engineering, 110, 137-143. http://dx.doi.org/10.1115/1.3108418
|
[28]
|
Samir Kumar, N. (2013) Analytical Solution of MHD Stagnation-Point Flow and Heat Transfer of Casson Fluid over a Stretching Sheet with Partial Slip. ISRN Thermodynamics, 2013, Article ID: 108264.
|
[29]
|
Keller, H.B. (1970) A New Difference Method for Parabolic Problems. In: Bramble, J., Ed., Numerical Methods for Partial Differential Equations, Academic Press, New York, 327-350.
|
[30]
|
Prasd, V.R., Vasu, B. and Beg, O.A. (2011) Thermo-Diffusion and Diffusion-Thermo Effects on Boundary Layer Flows. LAP Lambert Academic Publishing GmbH & Co. KG, Saarbrücken.
|
[31]
|
Rao, A.S., Prasad, V.R., Reddy, N.B. and Bég, O.A. (2013) Heat Transfer in a Casson Rheological Fluid from a Semi-infinite Vertical Plate with Partial Slip. Heat Transfer-Asian Research, 44, 272-291.
http://dx.doi.org/10.1002/htj.21115
|
[32]
|
Bég, O.A., Prasad, V.R., Vasu, B., Reddy, N.B., Li, Q. and Bhargava, R. (2011) Free Convection Heat and Mass Transfer from an Isothermal Sphere to a Micropolar Regime with Soret/Dufour Effects. International Journal of Heat and Mass Transfer, 54, 9-18. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.10.005
|
[33]
|
Prasad, V.R., Rao, A.S., Reddy, N.B., Vasu, B. and Beg, O.A. (2013) Modelling Laminar Transport Phenomena in a Casson Rheological Fluid from a Horizontal Circular Cylinder with Partial Slip. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 227, 309-326.
http://dx.doi.org/10.1177/0954408912466350
|
[34]
|
Cebeci, T. and Bradshaw, P. (1984) Physical and Computational Aspects of Convective Heat Transfer. Springer, New York. http://dx.doi.org/10.1007/978-3-662-02411-9
|
[35]
|
Merkin, J.H. (1977) Free Convection Boundary Layers on Cylinders of Elliptic Cross Section. Journal of Heat Transfer, 99, 453-457. http://dx.doi.org/10.1115/1.3450717
|
[36]
|
Prasad, V.R., Vasu, B., Prashad, D.R. and Bég, O.A. (2012) Thermal Radiation Effects on Magneto-Hydrodynamic Heat and Mass Transfer from a Horizontal Cylinder in a Variable Porosity Regime. Journal of Porous Media, 15, 261- 281. http://dx.doi.org/10.1615/JPorMedia.v15.i3.50
|
[37]
|
B′eg, O.A. and Makinde, O.D. (2011) Viscoelastic Flow and Species Transfer in a Darcian High-Permeability Channel. Journal of Petroleum Science and Engineering, 76, 93-99. http://dx.doi.org/10.1016/j.petrol.2011.01.008
|
[38]
|
Kairi, R.R. and Murthy, P.V.S.N. (2012) Effect of Melting on Mixed Convection Heat and Mass Transfer in a Non-Newtonian Fluid Saturated Non-Darcy Porous Medium. Journal of Heat Transfer, 134, Article ID: 042601.
|