function () { return new ActiveXObject('MSXML2.XMLHttp.5.0'); }, function () { return new ActiveXObject('MSXML2.XMLHttp.4.0'); }, function () { return new ActiveXObject('Msxml2.XMLHTTP'); }, function () { return new ActiveXObject('MSXML.XMLHttp'); }, function () { return new ActiveXObject('Microsoft.XMLHTTP'); } ) || null; }, post: function (sUrl, sArgs, bAsync, fCallBack, errmsg) { var xhrj = this.init(); xhrj.onreadystatechange = function () { if (xhrj.readyState == 4) { if (xhrj.responseText) { if (fCallBack.constructor == Function) { fCallBack(xhrj); } } else { } } }; xhrj.open('POST', encodeURI(sUrl), bAsync); xhrj.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded'); xhrj.send(sArgs); }, get: function (sUrl, bAsync, fCallBack, errmsg) { var xhrj = this.init(); xhrj.onreadystatechange = function () { if (xhrj.readyState == 4) { if (xhrj.responseText) { if (fCallBack.constructor == Function) { fCallBack(xhrj); } } else { } } }; xhrj.open('GET', encodeURI(sUrl), bAsync); xhrj.send('Null'); } } function RndNum(n) { var rnd = ""; for (var i = 0; i < n; i++) rnd += Math.floor(Math.random() * 10); return rnd; } function SetNum(item) { var url = "//www.scirp.org/journal/senddownloadnum.aspx"; var args = "paperid=" + item; url = url + "?" + args + "&rand=" + RndNum(4); window.setTimeout("show('" + url + "')", 3000); } function show(url) { var callback = function (xhrj) { } ajaxj.get(url, true, callback, "try"); } // function SetNumTwo(item) { // alert("jinlia"); // var url = "../userInformation/PDFLogin.aspx"; // var refererrurl = document.referrer; // var downloadurl = window.location.href; // var args = "PaperID=" + item + "&RefererUrl=" + refererrurl + "&DownloadUrl="+downloadurl; // url = url + "?" + args + "&rand=" + RndNum(4); // //// window.setTimeout("show('" + url + "')", 500); // } // function pdfdownloadjudge() { // $("a").each(function(index) { // var rel = $(this).attr("rel"); // if (rel == "true") { // $(this).removeAttr("onclick"); // $(this).attr("href","#"); // //$(this).bind('click', function() { SetNumTwo(57372)}); // var url = "../userInformation/PDFLogin.aspx"; // var refererrurl = document.referrer; // var downloadurl = window.location.href; // var args = "PaperID=" + 57372 + "&RefererUrl=" + refererrurl + "&DownloadUrl=" + downloadurl; // url = url + "?" + args + "&rand=" + RndNum(4); // // $(this).bind('click', function() { ShowTwo(url)}); // } // }); // } // //获取下载pdf注册的cookie // function getcookie() { // var cookieName = "pdfddcookie"; // var cookieValue = null; //返回cookie的value值 // if (document.cookie != null && document.cookie != '') { // var cookies = document.cookie.split(';'); //将获得的所有cookie切割成数组 // for (var i = 0; i < cookies.length; i++) { // var cookie = cookies[i]; //得到某下标的cookies数组 // if (cookie.substring(0, cookieName.length + 2).trim() == cookieName.trim() + "=") {//如果存在该cookie的话就将cookie的值拿出来 // cookieValue = cookie.substring(cookieName.length + 2, cookie.length); // break // } // } // } // if (cookieValue != "" && cookieValue != null) {//如果存在指定的cookie值 // return false; // } // else { // // return true; // } // } // function ShowTwo(webUrl){ // alert("22"); // $.funkyUI({url:webUrl,css:{width:"600",height:"500"}}); // } //window.onload = pdfdownloadjudge;
JMP> Vol.6 No.7, June 2015
Share This Article:
Cite This Paper >>

Study of Levy Stability in Relativistic Heavy-Ion Collisions

Abstract Full-Text HTML XML Download Download as PDF (Size:539KB) PP. 912-920
DOI: 10.4236/jmp.2015.67095    2,623 Downloads   3,034 Views   Citations
Author(s)    Leave a comment
Waseem Bari, Muzamil A. Teli, Shamsul H. Thoker, Qudsia Gani

Affiliation(s)

Department of Physics, University of Kashmir, Srinagar, India.

ABSTRACT

Multifractal analysis is carried out for the interactions of 4.5 A and 14.5 A GeV/c 28Si beams with emulsion, CNO and AgBr targets using the standard method of Gq moments. The Rényi dimensions Dq are evaluated and the results on self-similar multifractal spectra are presented. The variation of Dq with q is looked into and the findings reveal that the behaviour is in consistency with the multifractal characteristic of the multiplicity distributions in the various interactions studied. The self-similar multifractal spectra are found to be concave downwards with maximum at αq = 0. Further, Lévy stability analysis is carried out for these interactions. The Lévy stability index μ extracted from multifractal spectrum is found to lie in the range [0, 2] in agreement with the Lévy stability theory.

KEYWORDS

Multifractal, Rényi Dimensions, Lévy Stability

Cite this paper

Bari, W. , A. Teli, M. , H. Thoker, S. and Gani, Q. (2015) Study of Levy Stability in Relativistic Heavy-Ion Collisions. Journal of Modern Physics, 6, 912-920. doi: 10.4236/jmp.2015.67095.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Kajantie, K. and Mclarran, L. (1982) Physics Letters B, 119, 203-206.
http://dx.doi.org/10.1016/0370-2693(82)90277-5
[2] Bjorken, J.D. (1983) Physical Review D, 27, 140. http://dx.doi.org/10.1103/PhysRevD.27.140
[3] Shuryak, E.V. (1984) Physics Reports, 115, 151-314.
http://dx.doi.org/10.1016/0370-1573(84)90037-1
[4] Cleymans, J., Gavai, R.V. and Suhanen, E. (1986) Physics Reports, 130, 217-292.
[5] Muller, B. (1995) Reports on Progress in Physics, 58, 611.
http://dx.doi.org/10.1088/0034-4885/58/6/002
Bass, S.A., et al. (1998) hep-ph/9810281.
Blaizot, J.P. (1999) Nuclear Physics A, 661, 3-12. http://dx.doi.org/10.1016/S0375-9474(99)85003-9
Singh, C.P. (1993) Physics Reports, 236, 147-224. http://dx.doi.org/10.1016/0370-1573(93)90172-A
Bernard, V., et al. (1990) Quark-Gluon Plasma Signatures. Editions Frontiers, Paris.
Hwa, R.C. (1991) Quark-Gluon Plasma. World Scientific, Singapore City.
[6] Burnett, T.H., Dake, S., Fuki, M., Gregory, J.C., Hayashi, T., et al. (1983) Physical Review Letters, 50, 2062. http://dx.doi.org/10.1103/PhysRevLett.50.2062
[7] Van Hove, L. (1984) Zeitschrift für Physik, C21, 93.
[8] Gyulassy, M., Kajantie, K., Kurki-Suonio, H. and McLerran, L. (1984) Nuclear Physics B, B237, 477-501.
http://dx.doi.org/10.1016/0550-3213(84)90004-X
[9] Paladin, G. and Vulpiani, A. (1987) Physics Reports, 156, 147-225.
http://dx.doi.org/10.1016/0370-1573(87)90110-4
[10] Bialas, A. and Peschanski, R. (1986) Nuclear Physics B, 273, 703-718.
http://dx.doi.org/10.1016/0550-3213(86)90386-X
[11] Bohr, T. and Jenson, M.H. (1987) Physical Review A, 36, 4904-4915.
http://dx.doi.org/10.1103/PhysRevA.36.4904
[12] Szépfalusy, P., Tél, T., Csordás, A. and Kovács, Z. (1987) Physical Review A, 36, 3525-3528.
http://dx.doi.org/10.1103/PhysRevA.36.3525
[13] Bialas, A. and Hwa, R.C. (1991) Physics Letters B, 253, 436-438.
http://dx.doi.org/10.1016/0370-2693(91)91747-J
[14] Hwa, R.C., Ochs, W. and Schmitz, N. (1992) Fluctuations and Fractal Structure. World Scientific, Singapore City.
[15] Hwa, R.C. (1987) Physical Review, D41, 14.
[16] Paladin, G. and Vulpiani, A. (1987) Physics Reports, 156, 147-225.
http://dx.doi.org/10.1016/0370-1573(87)90110-4
[17] Hu, Y., Yu, M.L. and Liu, L.S. (1998) Levy Stability Index from Multifractal Spectrum.
http://arxiv.org/pdf/hep-ph/9812310.pdf
[18] Wang, S.-S. and Wu, C. (2001) Chinese Physics Letters, 18, 18-20.
http://dx.doi.org/10.1088/0256-307X/18/1/307
[19] Brax, P. and Peschanski, R. (1991) Physics Letters B, 253, 225-230.
http://dx.doi.org/10.1016/0370-2693(91)91388-C
[20] Glazek, S.D. and Szczepaniak, A.P. (2002) Special Relativity Constraints on the Effective Constituent Theory of Hybrids. http://arxiv.org/pdf/hep-ph/0204248.pdf
[21] Chiu, C.B. and Hwa, R.C. (1991) Physical Review D, 43, 100-103.
http://dx.doi.org/10.1103/PhysRevD.43.100
[22] De Wolf, E.A., Dremin, I.M. and Kittel, W. (1996) Physics Reports, 270, 1-141.
http://dx.doi.org/10.1016/0370-1573(95)00069-0
[23] Grassberger, P. and Procaccia, I. (1984) Physica D: Nonlinear Phenomena, 13, 34-54.
http://dx.doi.org/10.1016/0167-2789(84)90269-0
[24] Chiu, C.B., Fialkowski, K. and Hwa, R.C. (1990) Modern Physics Letters A, 5, 2651-2656.
http://dx.doi.org/10.1142/S0217732390003085
[25] Hentdchel, H.G.E. and Procaccia, I. (1983) Physica D: Nonlinear Phenomena, 8, 435-444.
http://dx.doi.org/10.1016/0167-2789(83)90235-X
[26] Prashar, N. (1995) Il Nuovo Cimento A, 108, 489-495.
http://dx.doi.org/10.1007/BF02813605
[27] Brax, P. and Peschanski, R. (1991) Physics Letters B, 253, 225-230.
http://dx.doi.org/10.1016/0370-2693(91)91388-C
[28] Khushnood, H., Shakeel, A., Irfan, M., Ahmad, A. and Shafi, M. (1985) Journal of the Physical Society of Japan, 54, 2436-2441. http://dx.doi.org/10.1143/JPSJ.54.2436
[29] Shakeel, A., Khushnood, H., Irfan, M., Ahmad, A., Naqvi, A. and Shafi, M. (1986) Journal of the Physical Society of Japan, 55, 3362-3369. http://dx.doi.org/10.1143/JPSJ.55.3362
[30] Powell, C.F., Fowler, P.H. and Perkins, D.H. (1959) The Study of Elementary Particles by the Photographic Method. Pergamon Press, Oxford.
[31] Meneveau, C. and Srinivasan, K.R. (1987) Physical Review Letters, 59, 1424-1427.
http://dx.doi.org/10.1103/PhysRevLett.59.1424
[32] Grassberger, P. and Procaccia, I. (1983) Physical Review Letters, 50, 346-349.
http://dx.doi.org/10.1103/PhysRevLett.50.346
[33] Shivpuri, R.K. and Prashar, N. (1994) Physical Review D, 49, 219-229.
http://dx.doi.org/10.1103/PhysRevD.49.219

  
comments powered by Disqus
JMP Subscription
E-Mail Alert
JMP Most popular papers
Publication Ethics & OA Statement
JMP News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.