[1]
|
Bellman, R. (1961) Adaptive Control Processes: A Guide Tour. John Wiley, Princeton University, Princeton.
|
[2]
|
Jain, A.K. and Chandrasekaran, B. (1982) Dimensionality and Sample Size Considerations in Pattern Recognition Practice. In: Krishnaiah, P.R. and Kanal, L.N., Eds., Handbook of Statistics, Volume 2, Elsevier, Amsterdam, 201-213.
http://dx.doi.org/10.1016/s0169-7161(82)02042-2
|
[3]
|
Rao, C.R. (1948) The Utilization of Multiple Measurements in Problems of Biological Classification. Journal of the Royal Statistical Society: Series B, 10, 159-203.
|
[4]
|
Fisher, R.A. (1936) The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7, 179-188.
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
|
[5]
|
McLachlan, G.J. (1992) Discriminant Analysis and Statistical Pattern Recognition. John Wiley, New York.
http://dx.doi.org/10.1002/0471725293
|
[6]
|
Decell, H.P. and Mayekar, S.M. (1977) Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B, 39, 1-38.
|
[7]
|
Okada, T. and Tomita, S. (1984) An Extended Fisher Criterion for Feature Extraction—Malina’s Method and Its Problems. Electronics and Communications in Japan, 67, 10-16.
http://dx.doi.org/10.1002/ecja.4400670603
|
[8]
|
Loog, M. and Duin, P.W. (2004) Linear Dimensionality Reduction via a Heteroscedastic Extension of LDA: The Chernoff Criterion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 732-739.
http://dx.doi.org/10.1109/TPAMI.2004.13
|
[9]
|
Fukunaga, K. (1990) Introduction to Statistical Pattern Recognition. 2nd Edition, Academic Press, Boston.
|
[10]
|
Hennig, C. (2004) Asymmetric Linear Dimension Reduction for Classification. Journal of Computational and Graphical Statistics, 13, 930-945. http://dx.doi.org/10.1198/106186004X12740
|
[11]
|
Kumar, N. and Andreou, A.G. (1996) A Generalization of Linear Discriminant Analysis in a Maximum Likelihood Framework. Proceedings of the Joint Statistical Meeting.
|
[12]
|
Young, D.M., Marco, V.R. and Odell, P.L. (1987) Quadratic Discrimination: Some Results on Optimal Low-Dimen-sional Representation. The Journal of Statistical Planning and Inference, 17, 307-319.
http://dx.doi.org/10.1016/0378-3758(87)90122-4
|
[13]
|
Peters, B.C., Redner, R. and Decell, H.P. (1978) Characterization of Linear Sufficient Statistics. Sankhya, 40, 303-309.
|
[14]
|
Brunzell, H. and Eriksson, J. (2000) Feature Reduction for Classification of Multidimensional Data. Pattern Recognition, 33, 1741-1748. http://dx.doi.org/10.1016/S0031-3203(99)00142-9
|
[15]
|
Cook, R.D. and Weisberg, S. (1991) Discussion of “Sliced Inverse Regression for Dimension Reduction” by K.-C. Li. Journal of the American Statistical Association, 86, 328-332.
|
[16]
|
Li, K.-C. (1991) Sliced Inverse Regression for Dimension Reduction. Journal of the American Statistical Association, 86, 316-327. http://dx.doi.org/10.1080/01621459.1991.10475035
|
[17]
|
Tubbs, J.D., Coberly, W.A. and Young, D.M. (1982) Linear Dimension Reduction and Bayes Classification with Unknown Population Parameters. Pattern Recognition, 15, 167-172.
http://dx.doi.org/10.1016/0031-3203(82)90068-1
|
[18]
|
Schervish, M.J. (19884) Linear Discrimination for Three Known Normal Populations. Journal of Statistical Planning and Inference, 10, 167-175. http://dx.doi.org/10.1016/0378-3758(84)90068-5
|
[19]
|
Cook, R.D. (2000) SAVE: A Method for Dimension Reduction and Graphics in Regression. Communications in Statistics—Theory and Methods, 29, 2109-2121.
http://dx.doi.org/10.1080/03610920008832598
|
[20]
|
Cook, R.D. and Yin, X. (1991) Dimension Reduction and Visualization in Discriminant Analysis. Australian and New Zealand Journal of Statistics, 43, 147-199.
http://dx.doi.org/10.1111/1467-842X.00164
|
[21]
|
Vellila, S. (2012) A Note on the Structure of the Quadratic Subspace in Discriminant Analysis. Statistics and Probability Letters, 82, 739-747. http://dx.doi.org/10.1016/j.spl.2011.12.020
|