Enhanced Photo-Induced Property of LPCVD-TiO2 Layer on PCVD-TiOx Initial Layer

DOI: 10.4236/msce.2015.37004   PDF   HTML   XML   3,779 Downloads   4,280 Views   Citations


Plasma-assisted chemical vapor deposition (PCVD) was applied for amorphous TiOx deposition on Pyrex-glass substrate at low temperature below 90°C to control orientation of anatase-TiO2 layer by low pressure chemical vapor deposition (LPCVD) using TTIP-single precursor. Preferentially <112>-oriented anatase-TiO2 layer was successfully deposited with the orientation ratio as high as 68% on the initial layer of the thickness around 70 nm. Contact angle water was quickly decreased by UV-irradiation on the highly <112>-oriented TiO2 layer comparing with the layer directly deposited on glass, whereas surface roughness on the former was significantly reduced in comparison to that on the latter. Methyleneblue (MB) aqueous solution with the concentration of 2 mmol/L was used to evaluate photocatalytic property on the layer. Rate constant of MB-decomposition via first order kinetics increased with the orientation ratio above 60% was resulted in 2.3 × 10-1 min-1 for the layer with <112>-orientation ratio of 68%, whereas the constant was 2.8 × 10-3 min-1 for the layer directly deposited on glass.

Share and Cite:

Yamauchi, S. , Yamamoto, K. and Hatakeyama, S. (2015) Enhanced Photo-Induced Property of LPCVD-TiO2 Layer on PCVD-TiOx Initial Layer. Journal of Materials Science and Chemical Engineering, 3, 28-38. doi: 10.4236/msce.2015.37004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Wang, R., Hashimoto, K. and Fujishima, A. (1997) Light-Induced Amphiphilic Surfaces. Nature, 388, 431-432.
[2] Mills, A., Lepre, A., Elliott, N., Bhopal, A., Parkin, I.P. and Neill, S.A. (2003) Characterisation of the Photocatalyst Pilkington Activ : A Reference Film Photocatalyst Journal of Photochemistry and Photobiology A: Chemistry, 160, 213-224.
[3] Koelsch, M., Cassaignon, S., Guillemoles, J.F. and Joivet, J.P. (2002) Comparison of Optical and Electrochemical Properties of Anatase and Brookite TiO2 Synthesized by the Sol-Gel Method. Thin Solid Films, 403-404, 312-319.
[4] Zhang, T., Oyama, T., Aoshima, A., Hidaka, H., Zhao, J. and Serpone, N. (2001) Photooxidative N-Demethylation of Methylene Blue in Aqueous TiO2 Dispersions under UV Irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 140, 163-172.
[5] Chang, H., Su, C., Lo, C.H., Chen, L.C., Tsung, T.T. and Jwo, C.S. (2004) Photodecomposition and Surface Adsorption of Methylene Blue on TiO2 Nanofluid Prepared by ASNSS. Materials Transactions, 45, 3334-3337.
[6] Goti , M., Ivanda, M., Sekuli , A., Musi , S., Popovi, S., Turkovi , A. and Furi , K. (1996) Microstructure of Nanosized TiO2 Obtained by Sol-Gel Synthesis. Material Letters, 28, 225-229.
[7] Lobl, P., Huppertz, M. and Mergel, D. (1994) Nucleation and Growth in TiO2 Films Prepared by Sputtering and Evaporation. Thin Solid Films, 251, 72-79.
[8] Gauthier, V., Bourgeois, S., Sibillot, P., Maglione, M. and Sacilotti, M. (1999) Growth and Characterization of AP- MOCVD Iron Doped Titanium Dioxide Thin Films. Thin Solid Films, 340, 175-182.
[9] Nakamura, M., Kobayashi, M., Kuzuya, N., Komatsu, T. and Mochizuka, T. (2005) Hydrophilic Property of SiO2/TiO2 Double Layer Films. Thin Solid Films, 502, 121-124.
[10] Tokita, S., Takana, N. and Saitoh, H. (2000) High-Rate Epitaxy of Anatase Films by Atmospheric Chemical Vapor Deposition. Japanese Journal of Applied Physics, 39, L169-L171.
[11] Kim, B., Byun, D., Kee, J. and Park, D. (2002) Structural Analysis on Photocatalytic Efficiency of TiO2 by Chemical Vapor Deposition. Japanese Journal of Applied Physics, 41, 222-226.
[12] Yamauchi, S., Saiki, S., Ishibashi, K., Nakagawa, A. and Hatakeyama, S. (2014) Low Pressure Chemical Vapor Deposition of Nb and F Co-Doped TiO2 Layer. Journal of Crystallization Process and Technology, 4, 79-88.
[13] Yamauchi, S., Ishibashi, K. and Hatakeyama, S. (2014) Low Pressure Chemical Vapor Deposition of TiO2 Layer in Hydrogen-Ambient. Journal of Crystallization Process and Technology, 4, 185-192.
[14] Shmakov, A.G., Korobeinichev, O.P., Knyazkov, D.A., Paletsky, A.A., Maksutov, R.A., Gerasimov, I.E., Bolshova, T.A., Kiselev, V.G. and Gritsan, N.P. (2013) Combustion Chemistry of Ti(OC3H7)4 in Premixed Flat Burner-Stabilized H2/O2/Ar Flame at 1 atm. Proceedings of the Combustion Institute, 34, 1143-1149.
[15] Yamauchi, S., Suzuki, H. and Akutsu, R. (2014) Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Layer at Room-Temperature. Journal of Crystallization Process and Technology, 4, 20-26.
[16] Weisssmann, S., et al. (1978) Selected Powder Diffraction Data for Metals and Alloys, JCPDS, Card No. 21-1272.
[17] Sakai, N., Fujishima, A., Watanabe, T. and Hashimoto, K. (2003) Quantitative Evaluation of the Photoinduced Hydrophilic Conversion Properties of TiO2 Thin Film Surfaces by the Reciprocal of Contact Angle. The Journal of Physical Chemistry B, 107, 1028-1035.
[18] Wenzel, R.W. (1936) Resistance of Solid Surfaces to Wetting by Water. Industrial and Engineering Chemistry, 28, 988-994.
[19] Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemann, D.W. (1995) Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95, 69-96.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.