Magneto Hydrodynamic Orthogonal Stagnation Point Flow of a Power-Law Fluid Toward a Stretching Surface

DOI: 10.4236/ajcm.2011.12013   PDF   HTML     5,413 Downloads   10,586 Views   Citations


Steady two dimensional MHD stagnation point flow of a power law fluid over a stretching surface is investigated when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation point. The fluid impinges on the surface is considered orthogonally. Numerical and analytical solutions are obtained for different cases.

Share and Cite:

M. Patel and M. Timol, "Magneto Hydrodynamic Orthogonal Stagnation Point Flow of a Power-Law Fluid Toward a Stretching Surface," American Journal of Computational Mathematics, Vol. 1 No. 2, 2011, pp. 129-133. doi: 10.4236/ajcm.2011.12013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. A. Attai, “Stagnation Point Flow towards a Stretching Sur-face through a Porous Medium with Heat Generation,” Turkish Journal of Engineering & Environmental Scien- ces, Vol. 30, No. 5, 2006, pp. 299-306.
[2] F. M. Hayd and I. A. Hassanien, “Magnetohydrodynamic and Constant Suction/Injection Effects of Axisymmetric Stagnation Point Flow and Mass Transfer for Power-Law Fluids,” Indian Journal of Pure and Applied Mathematics, Vol. 17, No. 1, 1986, pp. 108-120.
[3] F. Lab-ropulu and D. Li, “Stagnation Point Flow of a Second-Grade Fluid with Slip,” International Journal of Non-Linear Mechan-ics, Vol. 43, No. 9, 2008, pp. 941-947. doi:10.1016/j.ijnonlinmec.2008.07.004
[4] B. Norfifah and I. Anuar, “MHD Stagnation-Point Flow of a Micropolar Fluid with Prescribed Wall Heat Flux,” European Journal of Scien-tific Research, Vol. 35 No. 3, 2009, pp. 436-443.
[5] M. Patel and M. G. Timol, “Numerical Solution of Steady Two-Dimensional MHD forward Stagnation Point Flow,” Ap-plied Mathematical Science, Vol. 3, No. 4, 2009, pp. 187-193.
[6] K. Hiemenz, “Die Grenzschicht an Einem in Den Gleichformingen Flussigkeitsstrom Eingetauchten Graden Krei- szylinder,” Dingler’s Polytechnic Journal, Vol. 326, 1911, pp. 321-324.
[7] F. Homann, “Der Einfluss Grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel,” Journal of Applied Mathematics and Mechanics/Zeitschrift für Ange-wandte Mathematik und Mechani, Vol. 16, No. 3, 1936, pp. 153-164. doi:10.1002/zamm.19360160304
[8] T. Y. Na, “Computational Methods in Engineering Boundary Value Problems,” Academic Press, New York, 1979.
[9] P. D. Ariel, “Hiemenz Flow in Hydromagnetics,” Acta Mechanica, Vol. 103, No. 1-4, 1994, pp. 31-43.
[10] K. R. Rajagopal, T. Y. Na and A. S. Gupta, “A Non Similar Boundary Layer on a Stretching Sheet in a Non-Newtonian Fluid with Uniform Free Stream,” Journal of Mathematical Physics, Vol. 21, No. 2, 1987, pp. 189-200.
[11] K. R. Rajagopal, T. Y. Na and A. S. Gupta, “Flow of a Viscoelastic Fluid over a Stretching Sheet,” Rheologica Acta, Vol. 23, No. 2, 1984, pp. 213-215. doi:10.1007/BF01332078
[12] T. C. Chiam, “Stagnation-Point Flow towards a Stretching Plate,” Journal of the Physical Soci-ety of Japan, Vol. 63, No. 6, 1994, pp. 2443-2444. doi:10.1143/JPSJ.63.2443
[13] T. R. Mahapatra and A. S. Gupta, “Heat Transfer in Stagnation-Point Flow towards a Stretching Sheet,” Heat Mass Transfer, Vol. 38, No. 6, 2002, pp. 517-521. doi:10.1007/s002310100215
[14] T. C. Chiam, “Solution for the Flow of a Conducting Power-Law Fluid in a Transverse Magnetic Field and with a Pressure Gradient Using Crocco Variables,” Acta Mechanica, Vol. 137, No. 3-4, 1999, pp. 225-235.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.