A Kinematics Scalar Projection Method (KSP) for Incompressible Flows with Variable Density

Abstract

A new scalar projection method presented for simulating incompressible flows with variable density is proposed. It reverses conventional projection algorithm by computing first the irrotational component of the velocity and then the pressure. The first phase of the projection is purely kinematics. The predicted velocity field is subjected to a discrete Hodge-Helmholtz decomposition. The second phase of upgrade of pressure from the density uses Stokes’ theorem to explicitly compute the pressure. If all or part of the boundary conditions is then fixed on the divergence free physical field, the system required to be solved for the scalar potential of velocity becomes a Poisson equation with constant coefficients fitted with Dirichlet conditions.

Share and Cite:

Caltagirone, J. and Vincent, S. (2015) A Kinematics Scalar Projection Method (KSP) for Incompressible Flows with Variable Density. Open Journal of Fluid Dynamics, 5, 171-182. doi: 10.4236/ojfd.2015.52019.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Fortin, M. and Glowinski, R. (1982) Méthodes de lagrangien augmenté, application à la résolution numé rique de problèmes aux limites. Dunod, Paris.
[2] Vincent, S., Sarthou, A., Caltagirone, J.-P., Sonilhac, F., Février, P., Mignot, C. and Pianet, G. (2011) Augmented Lagrangian and Penalty Methods for the Simulation of Two-Phase Flows Interacting with Moving Solids. Application to Hydroplaning Flows Interacting with Real Tire Tread Patterns. Journal of Computational Physics, 230, 956-983.
http://dx.doi.org/10.1016/j.jcp.2010.10.006
[3] Chorin, A.J. (1968) Numerical Solution of the Navier-Stokes Equations. Mathematics of Computation, 22, 745-762.
http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2
[4] Rhie, C.M. and Chow, W.L. (1983) Numerical Study of the Turbulent Flow past an Airfoil with Trailing Edge Separation. AIAA Journal, 21, 1525-1532.
http://dx.doi.org/10.2514/3.8284
[5] Harlow, F.H. and Welch, J.E. (1965) Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with a Free Surface. Physics of Fluids, 8, 2182-2189.
http://dx.doi.org/10.1063/1.1761178
[6] Guermond, J.L., Minev, P. and Shen, J. (2006) An Overview of Projection Methods for Incompressible Flows. Computer Methods in Applied Mechanics and Engineering, 195, 6011-6045.
http://dx.doi.org/10.1016/j.cma.2005.10.010
[7] Bell, J.B., Colella, P. and Glaz, H.M. (1989) A Second Order Projection Method for the Incompressible Navier-Stokes Equations. Journal of Computational Physics, 85, 257-283.
http://dx.doi.org/10.1016/0021-9991(89)90151-4
[8] Benzi, M. (2002) Preconditioning Techniques for Large Linear Systems: A Survey. Journal of Computational Physics, 182, 418-477.
http://dx.doi.org/10.1006/jcph.2002.7176
[9] Benzi, M., Golub, G.H. and Liesen, J. (2005) Numerical Solution of Saddle Point Problems. Acta Numerica, 14, 1-137.
http://dx.doi.org/10.1017/S0962492904000212
[10] Cai, M., Nokaka, Y., Bell, J.B., Griffith, B.E. and Donev, A. (2014) Efficient Variable-Coefficient Finite-Volume Stokes Solvers. Numerical Analysis, 327, 1179-1184.
[11] Guermond, J.L. and Salgado, A. (2009) A Splitting Method for Incompressible Flows with Variable Density Based on a Pressure Poisson Equation. Journal of Computational Physics, 228, 2834-2846.
http://dx.doi.org/10.1016/j.jcp.2008.12.036
[12] Liu, C., Shen, J. and Yang, X.F. (2015) Decoupled, Energy Stable Schemes for Phase-Field Models of Two-Phase Incompressible Flows. Journal of Scientific Computing, 62, 601-622.
http://dx.doi.org/10.1007/s10915-014-9867-4
[13] Poux, A., Glockner, S. and Azaïez, M. (2011) Improvements on Open and Traction Boundary Conditions for Navier-Stokes Time-Splitting Methods. Journal of Computational Physics, 230, 4011-4027.
http://dx.doi.org/10.1016/j.jcp.2011.02.024
[14] Dodd, M.S. and Ferrante, A. (2014) A Fast Pressure-Correction Method for Incompressible Two-Fluid Flows. Journal of Computational Physics, 273, 416-434.
http://dx.doi.org/10.1016/j.jcp.2014.05.024
[15] Caltagirone, J.-P. and Vincent, S. (1999) Sur une méthode de pénalisation tensorielle pour la résolution des équations de Navier-Stokes. Comptes Rendus de l’Académie des Sciences Série IIb, 329, 607-613.
http://dx.doi.org/10.1016/S1620-7742(01)01374-5
[16] Angot, P., Caltagirone, J.-P. and Fabrie, P. (2012) A Fast Vector Penalty-Projection Method for Incompressible Non-Homogeneous or Multiphase Navier-Stokes Problems. Applied Mathematics Letters, 25, 1681-1688.
http://dx.doi.org/10.1016/j.aml.2012.01.037
[17] Angot, P., Caltagirone, J.-P. and Fabrie, P. (2013) Fast Discrete Helmholtz-Hodge Decompositions in Bounded Domains. Applied Mathematics Letters, 26, 445-451.
http://dx.doi.org/10.1016/j.aml.2012.11.006
[18] Lemoine, A., Caltagirone, J.-P., Azaiez, P. and Vincent, S. (2014) Discrete Helmholtz-Hodge Decomposition on Polyhedral Meshes Using Compatible Discrete Operators. Journal of Scientific Computing.
http://dx.doi.org/10.1007/s10915-014-9952-8
[19] Bhatia, H., Norgard, G., Pascucci, V. and Bremer, P.T. (2012) The Helmholtz-Hodge Decomposition—A Survey. IEEE Transactions on Visualization and Computer Graphics, 99, 1386-1404.
[20] Caltagirone, J.-P. (2015) Discrete Mechanics. ISTE, John Wiley & Sons, London.
http://dx.doi.org/10.1002/9781119058588
[21] Caltagirone, J.-P. (2015) Application de la décomposition de Hodge-Helmholtz discrète aux écoulements incompressibles. HAL, 1-11.
https://hal.archives-ouvertes.fr/hal-01099958
[22] Peyret, R. and Taylor, T.D. (1983) Computational Methods for Fluid Flow. Springer-Verlag, New York.
[23] Trontin, P., Vincent, S., Estivalezes, J.-L. and Caltagirone, J.-P. (2012) A Subgrid Computation of the Curvature by a Particle/Level-Set Method. Application to a Front-Tracking/Ghost-Fluid Method for Incompressible Flows. Journal of Computational Physics, 231, 6990-7010.
http://dx.doi.org/10.1016/j.jcp.2012.07.002
[24] Vincent, S., Balmigère, G., Caltagirone, J.-P. and Meillot, E. (2010) Eulerian-Lagrangian Multiscale Methods for Solving Scalar Equations—Application to Incompressible Two-Phase Flows. Journal of Computational Physics, 229, 73-106.
http://dx.doi.org/10.1016/j.jcp.2009.09.007
[25] Vincent, S., Caltagirone, J.-P., Lubin, P. and Randrianarivelo, T.N. (2004) An Adaptative Augmented Lagrangian Method for Three-Dimensional Multimaterial Flows. Computers and Fluids, 33, 1273-1279.
http://dx.doi.org/10.1016/j.compfluid.2004.01.002
[26] Vincent, S. and Caltagirone, J.-P. (2000) Numerical Solving of Incompressible Navier-Stokes Equations Using an Original Local Multigrid Refinement Method. Comptes Rendus de l’Académie des Sciences SérieIIb, 328, 73-80.
http://dx.doi.org/10.1016/s1287-4620(00)88419-7
[27] Richardson, L.F. and Gaunt, J.A. (1927) The Deferred Approach to the Limit. Philosophical Transactions of the Royal Society A, 226, 299-349.
http://dx.doi.org/10.1098/rsta.1927.0008
[28] Landau, L.D. and Lifchitz, E.M. (1959) Fluid Mechanics. Pergamon Press, London.
[29] Lamb, H. (1993) Hydrodynamics. 6th Edition, Dover, New York.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.