[1]
|
Fortin, M. and Glowinski, R. (1982) Méthodes de lagrangien augmenté, application à la résolution numé
rique de problèmes aux limites. Dunod, Paris.
|
[2]
|
Vincent, S., Sarthou, A., Caltagirone, J.-P.,
Sonilhac, F., Février, P., Mignot, C. and Pianet, G. (2011) Augmented Lagrangian and Penalty Methods
for the Simulation of Two-Phase Flows Interacting with Moving Solids. Application to Hydroplaning
Flows Interacting with Real Tire Tread Patterns. Journal of Computational Physics, 230, 956-983.
http://dx.doi.org/10.1016/j.jcp.2010.10.006
|
[3]
|
Chorin, A.J. (1968) Numerical Solution of the
Navier-Stokes Equations. Mathematics of Computation, 22, 745-762.
http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2
|
[4]
|
Rhie, C.M. and Chow, W.L. (1983) Numerical
Study of the Turbulent Flow past an Airfoil with Trailing Edge Separation. AIAA Journal, 21, 1525-1532.
http://dx.doi.org/10.2514/3.8284
|
[5]
|
Harlow, F.H. and Welch, J.E. (1965) Numerical Calculation of
Time-Dependent Viscous Incompressible Flow of Fluid with a Free Surface. Physics of Fluids, 8, 2182-2189.
http://dx.doi.org/10.1063/1.1761178
|
[6]
|
Guermond, J.L., Minev, P. and Shen, J. (2006) An Overview
of Projection Methods for Incompressible Flows. Computer Methods in Applied Mechanics and
Engineering, 195, 6011-6045.
http://dx.doi.org/10.1016/j.cma.2005.10.010
|
[7]
|
Bell, J.B., Colella, P. and Glaz, H.M. (1989) A
Second Order Projection Method for the Incompressible Navier-Stokes Equations. Journal of
Computational Physics, 85, 257-283.
http://dx.doi.org/10.1016/0021-9991(89)90151-4
|
[8]
|
Benzi, M. (2002) Preconditioning Techniques for
Large Linear Systems: A Survey. Journal of Computational Physics, 182, 418-477.
http://dx.doi.org/10.1006/jcph.2002.7176
|
[9]
|
Benzi, M., Golub, G.H. and Liesen, J. (2005)
Numerical Solution of Saddle Point Problems. Acta Numerica, 14, 1-137.
http://dx.doi.org/10.1017/S0962492904000212
|
[10]
|
Cai, M., Nokaka, Y., Bell, J.B., Griffith, B.E.
and Donev, A. (2014) Efficient Variable-Coefficient Finite-Volume Stokes Solvers. Numerical Analysis,
327, 1179-1184.
|
[11]
|
Guermond, J.L. and Salgado, A. (2009) A Splitting Method for Incompressible Flows
with Variable Density Based on a Pressure Poisson Equation. Journal of Computational Physics, 228,
2834-2846.
http://dx.doi.org/10.1016/j.jcp.2008.12.036
|
[12]
|
Liu, C., Shen, J. and Yang, X.F. (2015) Decoupled,
Energy Stable Schemes for Phase-Field Models of Two-Phase Incompressible Flows. Journal of Scientific
Computing, 62, 601-622.
http://dx.doi.org/10.1007/s10915-014-9867-4
|
[13]
|
Poux, A., Glockner, S. and Azaïez, M. (2011)
Improvements on Open and Traction Boundary Conditions for Navier-Stokes Time-Splitting Methods.
Journal of Computational Physics, 230, 4011-4027.
http://dx.doi.org/10.1016/j.jcp.2011.02.024
|
[14]
|
Dodd, M.S. and Ferrante, A. (2014) A Fast
Pressure-Correction Method for Incompressible Two-Fluid Flows. Journal of Computational Physics, 273,
416-434.
http://dx.doi.org/10.1016/j.jcp.2014.05.024
|
[15]
|
Caltagirone, J.-P. and Vincent, S. (1999) Sur une
méthode de pénalisation tensorielle pour la résolution des équations de Navier-Stokes. Comptes Rendus
de l’Académie des Sciences Série IIb, 329, 607-613.
http://dx.doi.org/10.1016/S1620-7742(01)01374-5
|
[16]
|
Angot, P., Caltagirone, J.-P. and Fabrie, P.
(2012) A Fast Vector Penalty-Projection Method for Incompressible Non-Homogeneous or Multiphase
Navier-Stokes Problems. Applied Mathematics Letters, 25, 1681-1688.
http://dx.doi.org/10.1016/j.aml.2012.01.037
|
[17]
|
Angot, P., Caltagirone, J.-P. and Fabrie, P.
(2013) Fast Discrete Helmholtz-Hodge Decompositions in Bounded Domains. Applied Mathematics Letters,
26, 445-451.
http://dx.doi.org/10.1016/j.aml.2012.11.006
|
[18]
|
Lemoine, A., Caltagirone, J.-P., Azaiez, P. and
Vincent, S. (2014) Discrete Helmholtz-Hodge Decomposition on Polyhedral Meshes Using Compatible
Discrete Operators. Journal of Scientific Computing.
http://dx.doi.org/10.1007/s10915-014-9952-8
|
[19]
|
Bhatia, H., Norgard, G., Pascucci, V. and Bremer,
P.T. (2012) The Helmholtz-Hodge Decomposition—A Survey. IEEE Transactions on Visualization and
Computer Graphics, 99, 1386-1404.
|
[20]
|
Caltagirone, J.-P. (2015) Discrete Mechanics. ISTE, John Wiley &
Sons, London.
http://dx.doi.org/10.1002/9781119058588
|
[21]
|
Caltagirone, J.-P. (2015) Application de la
décomposition de Hodge-Helmholtz discrète aux écoulements incompressibles. HAL, 1-11.
https://hal.archives-ouvertes.fr/hal-01099958
|
[22]
|
Peyret, R. and Taylor, T.D. (1983)
Computational Methods for Fluid Flow. Springer-Verlag, New York.
|
[23]
|
Trontin, P., Vincent, S.,
Estivalezes, J.-L. and Caltagirone, J.-P. (2012) A Subgrid Computation of the Curvature by a
Particle/Level-Set Method. Application to a Front-Tracking/Ghost-Fluid Method for Incompressible
Flows. Journal of Computational Physics, 231, 6990-7010.
http://dx.doi.org/10.1016/j.jcp.2012.07.002
|
[24]
|
Vincent, S., Balmigère, G., Caltagirone, J.-P. and
Meillot, E. (2010) Eulerian-Lagrangian Multiscale Methods for Solving Scalar Equations—Application
to Incompressible Two-Phase Flows. Journal of Computational Physics, 229, 73-106.
http://dx.doi.org/10.1016/j.jcp.2009.09.007
|
[25]
|
Vincent, S., Caltagirone, J.-P., Lubin, P. and
Randrianarivelo, T.N. (2004) An Adaptative Augmented Lagrangian Method for Three-Dimensional
Multimaterial Flows. Computers and Fluids, 33, 1273-1279.
http://dx.doi.org/10.1016/j.compfluid.2004.01.002
|
[26]
|
Vincent, S. and Caltagirone, J.-P. (2000)
Numerical Solving of Incompressible Navier-Stokes Equations Using an Original Local Multigrid
Refinement Method. Comptes Rendus de l’Académie des Sciences SérieIIb, 328, 73-80.
http://dx.doi.org/10.1016/s1287-4620(00)88419-7
|
[27]
|
Richardson, L.F. and Gaunt, J.A. (1927) The
Deferred Approach to the Limit. Philosophical Transactions of the Royal Society A, 226, 299-349.
http://dx.doi.org/10.1098/rsta.1927.0008
|
[28]
|
Landau, L.D. and Lifchitz, E.M. (1959) Fluid
Mechanics. Pergamon Press, London.
|
[29]
|
Lamb, H. (1993) Hydrodynamics. 6th Edition, Dover, New York.
|