[1]
|
Burgers, J.M. (1948) A Mathematical Model Illustrating the Theory of Turbulence. In: Von Mises, R. and Von Karman, T., Eds., Advances in Applied Mechanics, Vol. 1, Academic Press, New York, 171-199.
http://www.sciencedirect.com/science/article/pii/S0065215608701005
http://dx.doi.org/10.1016/s0065-2156(08)70100-5
|
[2]
|
Burgers, J.M. (1975) The Non Linear Diffusion Equation Asymptotic Solution and Statistical Problems.
http://www.amazon.it/The-Non-Linear-Diffusion-Equation-Statistical/dp/9027704945
|
[3]
|
Kida, S. (1979) Asymptotic Properties of Burgers Turbulence. Journal of Fluid Mechanics, 93, 337-377.
http://journals.cambridge.org/action/displayAbstract;jsessionid=0174C93AF976CBF18771 FEB41E0FEFA9.journals?fromPage=online&aid=388434
http://dx.doi.org/10.1017/S0022112079001932
|
[4]
|
Samokhin, A. (2014) Gradient Catastrophes and Saw Tooth Solution for a Generalized Burgers Equation on an Interval. Journal of Geometry and Physics, 85, 177-184. http://www.sciencedirect.com/science/article/pii/ S0393044014000965
http://dx.doi.org/10.1016/j.geomphys.2014.05.007
|
[5]
|
Samokhin, A.V. (2013) Evolution of Initial Data for Burgers Equation with Fixed Boundary Values. Sci Herald of MSTUCA, 194, 63-70. http://www.mstuca.ru/scientific_work/scientific_work/files/194.pdf
|
[6]
|
Euvrard, D. (1992) Résolution Numérique des Equations aux Dérivées Partielles. Différences finies, Eléments finis. Masson, Paris.
|
[7]
|
Sinai, G. (1992) Statistics of Shocks in Solutions of Inviscid Burgers Equation. Communications in Mathematical Physics, 148, 601-621. http://citeseerx.ist.psu.edu/showciting?cid=205153
http://dx.doi.org/10.1007/bf02096550
|
[8]
|
She, Z.S., Aurell, E. and Frich, U. (1992) The Inviscid Burgers Equation with Initial Data of Brownian Type. Communications in Mathematical Physics, 148, 623-641.
http://www.researchgate.net/publication/38331252_The_inviscid_Burgers_equation_ with_initial_data_of_Brownian_type
http://dx.doi.org/10.1007/BF02096551
|
[9]
|
Hopf, E. (1950) The Partial Differential Equation: ut + uux= εuxx. Communications on Pure and Applied Mathematics, 3, 201-230. http://www.researchgate.net/publication/259149172_The_partial_ differential_equation_ut__uux__xx
http://dx.doi.org/10.1002/cpa.3160030302
|
[10]
|
Cole, J.D. (1951) On a Quasilinear Parabolic Equation Occurring in Aerodynamics. Quarterly of Applied Mathematics, 9, 225-236.
http://www.researchgate.net/publication/238286127_On_a_quasilinear_parabolic_ equation_occurring_in_aerodynamics
|
[11]
|
Joseph, K.T. (1988) Burgers Equation in the Quarter Plane, a Formula for the Weak Limit. Communications on Pure and Applied Mathematics, 41, 133-149. http://onlinelibrary.wiley.com/doi/10.1002/cpa.3160410202/abstract
http://dx.doi.org/10.1002/cpa.3160410202
|
[12]
|
Kevorkian, J. and Cole, J.D. (1981) Perturbation Methods in Applied Mathematics. Springer Verlag, New York.
http://www.amazon.com/Perturbation-Methods-Mathematics- Mathematical-Sciences/dp/0387905073
http://dx.doi.org/10.1007/978-1-4757-4213-8
|
[13]
|
Van Den Berg, I. (1987) Non Standard Asymptotic Analysis. Lecture Notes in Mathematics, 1249.
http://www.researchgate.net/publication/44553479_Nonstandard_asymptotic_ analysis__Imme_van_den_Berg
|
[14]
|
Lutz, R. and Goze, M. (1981) Non Standard Analysis. A Practical Guide with Application. Lecture Notes in Mathematics, 861.
|
[15]
|
Lutz, R. and Sari, T. (1982) Applications of Nonstandard Analysis in Boundary Value Problems in Singular Perturbatio Theory; Theory and Application of Singular Perturbation (Oberwolfach 1981). Lecture Notes in Mathematics, 942, 113-135.
http://www.researchgate.net/publication/225547873_Applications_of_ nonstandard_analysis_to_boundary_value_problems_in_singular_perturbation_theory
|
[16]
|
Bendaas, S. (1994) Quelques applications de l’A.N.S aux E.D.P. Ph.D. Thesis, Haute Alsace University, France.
|
[17]
|
Bendaas, S. (2008) L’équation de Burgers avec un Terme Dissipatif. Une approche non standard. Analele Universitatii din Oradea. Fascicola Matematica, 15, 239-252. http://stiinte.uoradea.ro/en/auofm/auofm_contents.htm
|