[1]
|
Saad, Y. (2003) Iterative Methods for Sparse Linear Systems. Siam, Bangkok.
http://dx.doi.org/10.1137/1.9780898718003
|
[2]
|
Varga, R.S. (2009) Matrix Iterative Analysis. Volume 27, Springer Science & Business Media, Heidelberger.
|
[3]
|
Young, D.M. (2014) Iterative Solution of Large Linear Systems. Elsevier, Amsterdam.
|
[4]
|
Lanczos, C. (1952) Solution of Systems of Linear Equations by Minimized Iterations. Journal of Research of the National Bureau of Standards, 49, 33-53. http://dx.doi.org/10.6028/jres.049.006
|
[5]
|
Hestenes, M.R. and Stiefel, E. (1952) Methods of Conjugate Gradients for Solving Linear Systems.
|
[6]
|
Walker, H.F. (1988) Implementation of the GMRES Method Using Householder Transformations. SIAM Journal on Scientific and Statistical Computing, 9, 152-163. http://dx.doi.org/10.1137/0909010
|
[7]
|
Sonneveld, P. (1989) CGS, a Fast Lanczos-Type Solver for Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 10, 36-52. http://dx.doi.org/10.1137/0910004
|
[8]
|
Freund, R.W. and Nachtigal, N.M. (1991) QMR: A Quasi-Minimal Residual Method for Non-Hermitian Linear Systems. Numerische Mathematik, 60, 315-339. http://dx.doi.org/10.1007/BF01385726
|
[9]
|
van der Vorst, H.A. (1992) Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 13, 631-644.
http://dx.doi.org/10.1137/0913035
|
[10]
|
Brezinski, C., Zaglia, M.R. and Sadok, H. (1992) A Breakdown-Free Lanczos Type Algorithm for Solving Linear Systems. Numerische Mathematik, 63, 29-38. http://dx.doi.org/10.1007/BF01385846
|
[11]
|
Chan, T.F., Gallopoulos, E., Simoncini, V., Szeto, T. and Tong, C.H. (1994) A Quasi-Minimal Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric Systems. SIAM Journal on Scientific Computing, 15, 338-347.
http://dx.doi.org/10.1137/0915023
|
[12]
|
Gutknecht, M.H. (1992) A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms, Part I. SIAM Journal on Matrix Analysis and Applications, 13, 594-639. http://dx.doi.org/10.1137/0613037
|
[13]
|
Gutknecht, M.H. (1994) A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II. SIAM Journal on Matrix Analysis and Applications, 15, 15-58. http://dx.doi.org/10.1137/S0895479890188803
|
[14]
|
Eisenstat, S.C. (1981) Efficient Implementation of a Class of Preconditioned Conjugate Gradient Methods. SIAM Journal on Scientific and Statistical Computing, 2, 1-4. http://dx.doi.org/10.1137/0902001
|
[15]
|
Meijerink, J.V. and van der Vorst, H.A. (1977) An Iterative Solution Method for Linear Systems of Which the Coefficient Matrix Is a Symmetric M-Matrix. Mathematics of Computation, 31, 148-162.
|
[16]
|
Ortega, J.M. (1988) Efficient Implementations of Certain Iterative Methods. SIAM Journal on Scientific and Statistical Computing, 9, 882-891. http://dx.doi.org/10.1137/0909060
|
[17]
|
Fowler, A.C. (1997) Mathematical Models in the Applied Sciences. Volume 17, Cambridge University Press, Cambridge.
|