Share This Article:

Comparison of Fixed Point Methods and Krylov Subspace Methods Solving Convection-Diffusion Equations

Abstract Full-Text HTML XML Download Download as PDF (Size:1670KB) PP. 113-126
DOI: 10.4236/ajcm.2015.52010    2,274 Downloads   2,750 Views  
Author(s)    Leave a comment

ABSTRACT

The paper first introduces two-dimensional convection-diffusion equation with boundary value condition, later uses the finite difference method to discretize the equation and analyzes positive definite, diagonally dominant and symmetric properties of the discretization matrix. Finally, the paper uses fixed point methods and Krylov subspace methods to solve the linear system and compare the convergence speed of these two methods.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Wang, X. (2015) Comparison of Fixed Point Methods and Krylov Subspace Methods Solving Convection-Diffusion Equations. American Journal of Computational Mathematics, 5, 113-126. doi: 10.4236/ajcm.2015.52010.

References

[1] Saad, Y. (2003) Iterative Methods for Sparse Linear Systems. Siam, Bangkok.
http://dx.doi.org/10.1137/1.9780898718003
[2] Varga, R.S. (2009) Matrix Iterative Analysis. Volume 27, Springer Science & Business Media, Heidelberger.
[3] Young, D.M. (2014) Iterative Solution of Large Linear Systems. Elsevier, Amsterdam.
[4] Lanczos, C. (1952) Solution of Systems of Linear Equations by Minimized Iterations. Journal of Research of the National Bureau of Standards, 49, 33-53.
http://dx.doi.org/10.6028/jres.049.006
[5] Hestenes, M.R. and Stiefel, E. (1952) Methods of Conjugate Gradients for Solving Linear Systems.
[6] Walker, H.F. (1988) Implementation of the GMRES Method Using Householder Transformations. SIAM Journal on Scientific and Statistical Computing, 9, 152-163.
http://dx.doi.org/10.1137/0909010
[7] Sonneveld, P. (1989) CGS, a Fast Lanczos-Type Solver for Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 10, 36-52.
http://dx.doi.org/10.1137/0910004
[8] Freund, R.W. and Nachtigal, N.M. (1991) QMR: A Quasi-Minimal Residual Method for Non-Hermitian Linear Systems. Numerische Mathematik, 60, 315-339.
http://dx.doi.org/10.1007/BF01385726
[9] van der Vorst, H.A. (1992) Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 13, 631-644.
http://dx.doi.org/10.1137/0913035
[10] Brezinski, C., Zaglia, M.R. and Sadok, H. (1992) A Breakdown-Free Lanczos Type Algorithm for Solving Linear Systems. Numerische Mathematik, 63, 29-38.
http://dx.doi.org/10.1007/BF01385846
[11] Chan, T.F., Gallopoulos, E., Simoncini, V., Szeto, T. and Tong, C.H. (1994) A Quasi-Minimal Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric Systems. SIAM Journal on Scientific Computing, 15, 338-347.
http://dx.doi.org/10.1137/0915023
[12] Gutknecht, M.H. (1992) A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms, Part I. SIAM Journal on Matrix Analysis and Applications, 13, 594-639.
http://dx.doi.org/10.1137/0613037
[13] Gutknecht, M.H. (1994) A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II. SIAM Journal on Matrix Analysis and Applications, 15, 15-58.
http://dx.doi.org/10.1137/S0895479890188803
[14] Eisenstat, S.C. (1981) Efficient Implementation of a Class of Preconditioned Conjugate Gradient Methods. SIAM Journal on Scientific and Statistical Computing, 2, 1-4.
http://dx.doi.org/10.1137/0902001
[15] Meijerink, J.V. and van der Vorst, H.A. (1977) An Iterative Solution Method for Linear Systems of Which the Coefficient Matrix Is a Symmetric M-Matrix. Mathematics of Computation, 31, 148-162.
[16] Ortega, J.M. (1988) Efficient Implementations of Certain Iterative Methods. SIAM Journal on Scientific and Statistical Computing, 9, 882-891.
http://dx.doi.org/10.1137/0909060
[17] Fowler, A.C. (1997) Mathematical Models in the Applied Sciences. Volume 17, Cambridge University Press, Cambridge.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.