Bulk Viscous Anisotropic Cosmological Models with Generalized Chaplygin Gas with Time Varying Gravitational and Cosmological Constants


This paper is devoted to studying the generalized Chaplygin gas models in Bianchi type III space- time geometry with time varying bulk viscosity, cosmological and gravitational constants. We are considering the condition on metric potential . Also to obtain deterministic models we have considered physically reasonable relations like , and the equation of state for generalized Chaplygin gas given by . A new set of exact solutions of Einstein’s field equations has been obtained in Eckart theory, truncated theory and full causal theory. Physical behaviour of the models has been discussed.

Share and Cite:

Kotambkar, S. , Singh, G. and Kelkar, R. (2015) Bulk Viscous Anisotropic Cosmological Models with Generalized Chaplygin Gas with Time Varying Gravitational and Cosmological Constants. Natural Science, 7, 312-323. doi: 10.4236/ns.2015.76035.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Singh, T. and Singh, G.P. (1991) Bianchi Type V and Vi Cosmological Models in Lyra Geometry. Astrophysics and Space Science, 182, 189-200. http://dx.doi.org/10.1007/BF00644999
[2] Singh, T. and Singh, G.P. (1992) Bianchi Type III and Kantowski-Schas Cosmological Models in Lyra Geometry. International Journal of Theoretical Physics, 31, 1433-1446. http://dx.doi.org/10.1007/BF00673976
[3] Reddy, D.R.K., Santikumar, R. and Naidu, R.L. (2012) Bianchi Type III Cosmological Models in f(R, T) Theory of Gravity. Astrophysics and Space Science, 342, 249-252. http://dx.doi.org/10.1007/s10509-012-1158-7
[4] Pradhan A., Zia, R. and Amirhashchi, H. (2012) Anisotropic Bianchi Type III String Cosmological Models in Normal Gauge for Lyra’s Manifold with Electromagnetic Field. Bulgarian Journal of Physics, 39, 248-269.
[5] Singh, J.K. and Rani, S. (2015) Bianchi Type III Cosmological Models in Lyra’s Geometry in the Presence of Massive Scalar Field. International Journal of Theoretical Physics, 54, 545-560. http://dx.doi.org/10.1007/s10773-014-2247-x
[6] Caldwell, R.R. and Doran, M. (2004) Cosmic Microwave Background and Supernova Constraints on Quintessence- Concordance Regions and Target Models. Physical Review D, 69, Article ID: 103517. http://dx.doi.org/10.1103/physrevd.69.103517
[7] Huang, Z.Y., Abdalla, E. and Su, R.K. (2006) Holographic Explanation of Wide Angle Power Correlation Suppression in the Cosmic Microwave Background Radiation. JCAP, 13, Article ID: 0605. http://dx.doi.org/10.1088/1475-7516/2006/05/013
[8] Caldwell, R.R., Komp, W., Parker, L. and Daniel, A.T.V. (2006) A Sudden Gravitational Transition. Physical Review D, 73, Article ID: 023513. http://dx.doi.org/10.1103/PhysRevD.73.023513
[9] Daniel, S.F., Caldwell, R.R., Cooray, A. and Melchiorri, A. (2008) Large Scale Structure as a Probe of Gravitational Slip. Physical Review D, 77, Article ID: 103513. http://dx.doi.org/10.1103/physrevd.77.103513
[10] Fedeli, C., Moscardini, L. and Bartelmann, M. (2009) Observing the Clustering Properties of Galaxy Clusters in Dynamical Dark Energy Cosmologies. Astronomy Astrophysics, 500, 667-679. http://dx.doi.org/10.1051/0004-6361/200811477
[11] Peebles, P.J.E. and Ratra, B. (2003) The Cosmological Constant and Dark Energy. Reviews of Modern Physics, 75, 559. http://dx.doi.org/10.1103/revmodphys.75.559
[12] Hawking, S.W. (1969) On the Rotation of the Universe. Monthly Notices of the Royal Astronomical Society, 142, 129- 141. http://dx.doi.org/10.1093/mnras/142.2.129
[13] Hinshaw, G., Weiland, J.L., Hill, R.S., Odegard, N., Larson, D., et al. (2009) Five Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations-Cosmological Interpretations. Astrophysical Journal Supplement Series, 180, 225. http://dx.doi.org/10.1088/0067-0049/180/2/225
[14] Collins, C.B. and Hawking, S.W. (1973) Why Is the Universe Isotropic? Astrophysical Journal, 180, 317-334. http://dx.doi.org/10.1086/151965
[15] Sahni, V. and Starobinski, A. (2000) The Case for a Positive Cosmological Lambda Term. International Journal of Modern Physics D, 9, 373-444.
[16] Dirac, P.A.M. (1937) The Cosmological Constants. Nature, 139, 323. http://dx.doi.org/10.1038/139323a0
[17] Canuto, V.M. and Narlikar, J.V. (1980) Cosmological Tests of the Hoyle-Narlikar Conformal Gravity. Astrophysical Journal, 6, 236.
[18] Turyshev, S.G. (2004) 35 Years of Testing Relativistic Gravity—Where Do We Go from Here? Lecture Notes in Physics, 648, 311-330. http://dx.doi.org/10.1007/978-3-540-40991-5_19
[19] Chakraborty, S. and Roy, A. (2008) Anisotropic Cosmological Models with Bulk Viscosity for Variable G and Lambda. Astrophysics and Space Science, 313, 389-392. http://dx.doi.org/10.1007/s10509-007-9708-0
[20] Singh, C.P. and Beesham, A. (2010) Anisotropic Bianchi Type V Perfect Fluid Space-Time with Variable G and Lambda. International Journal of Modern Physics A, 25, 3825-3834. http://dx.doi.org/10.1142/S0217751X10050123
[21] Singh, K.P. (2010) On Robertson-Walker Universe Model with Variable Cosmological Term and Gravitational Constant in Cosmological Relativity Theory. Turkish Journal of Physics, 34, 173-180.
[22] Khurshudyan, M., Mazhari, N.S., Momeni, D., Myrzakulov, R. and Raza, M. (2015) Observational Constrains on Model of the Universe with Time Variable Gravitational and Cosmological Constants Along MOG. International Journal of Theoretical Physics, 54, 484-505. http://dx.doi.org/10.1007/s10773-014-2242-2
[23] Ellis, G.F.R. (1979) In: Schas, R., Ed., General Relativity and Cosmology, Enrico Fermi Course, Academic Press, New York, 47. Misner, C.W. (1968) The Isotropy of the Universe. Astrophysical Journal, 151, 431. Hu, B.L. (1983) Vacuum Viscosity and Entropy Generation in Quantum Gravitational Processes in the Early Universe. In: Fang, E.J. and Ruttini, R., Eds., Advances in Astrophysics, World Scientific, Singapore.
[24] Fabris, J.C., Concalves, S.V.B. and de Sá Ribeiro, R. (2006) Bulk Viscosity during the Acceleration of the Universe. General Relativity and Gravitation, 38, 495-506. http://dx.doi.org/10.1007/s10714-006-0236-y
[25] Singh, C.P., Kumar, S. and Pradhan, A. (2007) Early Viscous Universe with Variable Gravitational and Cosmological Constant. Classical and Quantum Gravity, 24, 455-474. http://dx.doi.org/10.1088/0264-9381/24/2/011
[26] Singh, T. and Chaubey, R. (2007) Bianchi Type-V Universe with Viscous Fluid and Lambda-Term. Pramana, 68, 721- 734. http://dx.doi.org/10.1007/s12043-007-0072-y
[27] Singh, J.P. and Baghel, P.S. (2009) Bianchi Type V Cosmological Model with Constant Deceleration Parameter in General Relativity. International Journal of Theoretical Physics, 48, 449-462. http://dx.doi.org/10.1007/s10773-008-9820-0
[28] Singh, J.P. and Baghel, P.S. (2009) Bianchi Type V Cosmological Models with Time Dependent Lambda Term. Electronic Journal of Theoretical Physics, 6, 85-95.
[29] Kotambkar, S., Singh, G.P. and Kelkar, R.K. (2014) Anisotropic Cosmological Models with Quintessence. International Journal of Theoretical Physics, 53, 449-460. http://dx.doi.org/10.1007/s10773-013-1829-3
[30] Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astronomical Journal, 116, 1009-1038. http://dx.doi.org/10.1086/300499
[31] Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., et al. (1999) Measurements of Omega and Lambda from 42 High Redshift Supernovae. Astronomical Journal, 517, 565-586. http://dx.doi.org/10.1086/307221
[32] Dev, A., Alcaniz, J.S. and Jain, D. (2003) Cosmological Consequences of a Chaplygin Gas Dark Energy. Physical Review D, 67, Article ID: 023515. http://dx.doi.org/10.1103/physrevd.67.023515
[33] Sen, A.A. and Scherrer, R.J. (2005) Generating the Generalized Chaplygin Gas. Physical Review D, 72, Article ID: 063511. http://dx.doi.org/10.1103/PhysRevD.72.063511
[34] Debnath, U. (2011) Modified Chaplygin Gas with Variable G and Lambda. Chinese Physics Letters, 28, Article ID: 119801. http://dx.doi.org/10.1088/0256-307X/28/11/119801
[35] Bento, M.C., Bertolami, O. and Sen, A.A. (2002) Generalized Chaplygin Gas, Accelerated Expansion and Dark Energy Matter Unification. Physical Review D, 66, Article ID: 043507. http://dx.doi.org/10.1103/physrevd.66.043507
[36] Gorini, V., Kamenshchik, A. and Moschella, U. (2003) Can a Chaplygin Gas Be a Plausible Model for Dark Energy? Physical Review D, 67, Article ID: 063509. http://dx.doi.org/10.1103/physrevd.67.063509
[37] Debnath, U., Banerjee, A. and Chakraborty, S. (2004) Role of Modified Chaplygin Gas in Accelerated Universe. Classical and Quantum Gravity, 21, 5609-5618. http://dx.doi.org/10.1088/0264-9381/21/23/019
[38] Dev, A., Alcaniz, J.S. and Jain, D. (2003) Cosmological Consequences of a Chaplygin Gas Dark Energy. Physical Review D, 67, Article ID: 023515. http://dx.doi.org/10.1103/physrevd.67.023515
[39] Paul, B.C., Thakur, D. and Verma, M.M. (2013) Observational Constraints on Modified Chaplygin Gas in Harava- Lifshitz Gravity with Dark Radiation. Pramana, 81, 691-718. http://dx.doi.org/10.1007/s12043-013-0593-5
[40] Maartens, R. (1995) Dissipative Cosmologies. Classical and Quantum Gravity, 12, 1455-1465. http://dx.doi.org/10.1088/0264-9381/12/6/011
[41] Raychaodhuri, A.K. (1955) Relativistic Cosmology. Physical Review, 98, 1123. http://dx.doi.org/10.1103/PhysRev.98.1123

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.